题目内容
11.(1)若∠DOF=25°,求∠AOB的度数.
(2)若OA平分∠BOE,则∠DOF的度数是30°.(直接写出答案)
分析 (1)利用角平分线的定义可得∠DOC=50°,由垂直的定义可得∠BOD=90°,易得∠BOC=40°,因为OA⊥OC,可得结果;
(2)利用垂直的定义易得∠BOC+∠COD=90°,∠AOB+∠BOC=90°,可得∠COD=∠AOB,设∠DOF=∠COF=x,利用平分线的定义可得∠AOE=∠AOB=∠COD=2x,∠BOC=90°-2x,由平角的定义可得5x+90°-2x=180°,解得x,即得结果.
解答 解:(1)∵∠DOF=25°,OF平分∠COD,
∴∠DOC=50°,
∵OB⊥OD,
∴∠BOC=90°-50°=40°,
∵OA⊥OC,
∴∠AOB=90°-∠BOC=50°;
(2)∵∠BOC+∠COD=90°,∠AOB+∠BOC=90°,
∴∠COD=∠AOB,
设∠DOF=∠COF=x,
∵OA平分∠BOE,
∴∠AOE=∠AOB=∠COD=2x,∠BOC=90°-2x,
∴5x+90°-2x=180°,
解得:x=30°,
即∠DOF=30°.
故答案为:30°.
点评 本题主要考查了角平分线的定义和垂直的定义,利用定义得出各角的度数是解答此题的关键.
练习册系列答案
相关题目
11.已知$\frac{x}{y}$=$\frac{3}{2}$,那么下列等式中一定正确的是( )
| A. | $\frac{3x}{y}=\frac{9}{2}$ | B. | $\frac{x+3}{y+3}=\frac{6}{5}$ | C. | $\frac{x-3}{y-2}=\frac{3}{2}$ | D. | $\frac{x+y}{x}=\frac{5}{2}$ |
3.
若干桶方便面放在桌面上,如图是从正面、左面、上面看到的结果,则这一堆方便面共有( )
| A. | 7桶 | B. | 8桶 | C. | 9桶 | D. | 10桶 |
1.下列四组数据中,“不能”作为直角三角形的三边长的是( )
| A. | 3,4,6 | B. | 5,12,13 | C. | 6,8,10 | D. | $\sqrt{2}$,$\sqrt{2}$,2 |