题目内容

10.如图,抛物线y=-2x2+x+1交y轴于点A,交x轴正半轴于点B.P为线段AB上一动点,作直线PC⊥PO,交过点B垂直于x轴的直线于点C.过P点作直线MN平行于x轴,交y轴于点M,交过点B垂直于x轴的直线于点N.
(1)求点A,B的坐标;
(2)证明:OP=PC.

分析 (1)根据抛物线的解析式,易求得A、B的坐标;
(2)首先根据A、B的坐标,求出直线AB的解析式,设出点P的横坐标,利用直线AB的解析式,即可表示出P点的纵坐标,由此可得到MP、OM、PN的长,从而证得OM=PN,而∠OPC=90°,则∠OPM、∠PCN同为∠CPN的余角,再加上一组直角,即可由AAS判定△OPM≌△PCN,由此得证.

解答 解:(1)当x=0时,y=1,当y=0时,x=1或$x=-\frac{1}{2}$,
A(0,1),B(1,0);
(2)∵A(0,1),B(1,0),
∴直线AB:y=-x+1;
设P(a,-a+1),则有:
PM=a,OM=1-a,PN=MN-PM=1-a,
故OM=PN;
∵∠OPC=90°,则∠OPM+∠CPN=∠CPN+∠PCN=90°,
∴∠OPM=∠PCN;
在△OPM和△PCN中,
$\left\{\begin{array}{l}{∠OPM=∠PCN}\\{∠OMP=∠CPN=90°}\\{OM=PN}\end{array}\right.$
∴△OPM≌△PCN(AAS),
∴OP=CP.

点评 此题主要考查了抛物线与坐标轴交点坐标的求法、全等三角形的判定,利用数形结合的思想解决问题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网