题目内容

1.如图,AB是⊙O的直径,弦AD平分∠BAC,交⊙O于点D,DE⊥AC于点E,求证:DE是⊙O的切线.

分析 连接OD,由等腰三角形的性质得出∠OAD=∠ADO,再由角平分线的性质得出∠EAD=∠ADO,故OD∥AE,再由平行线的性质可得出结论.

解答 证明:连接OD,
∵OD=OA,
∴∠OAD=∠ADO,
∵∠EAD=∠BAD,
∴∠EAD=∠ADO,
∴OD∥AE,
∴∠AED+∠ODE=180°,
∵DE⊥AC,即∠AED=90°,
∴∠ODE=90°,
∴OD⊥DE,
∴DE是⊙O的切线.

点评 考查了切线的判定,根据题意作出辅助线,构造出平行线,利用平行线的性质求解是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网