ÌâÄ¿ÄÚÈÝ
5£®ÔÚѧ¹ýÁ˶þÔªÒ»´Î·½³Ì×éµÄ½â·¨ºó£¬¿ÎÌÃÉÏÀÏʦÓÖд³öÁËÒ»¸öÌâÄ¿£º$\left\{\begin{array}{l}{\frac{x+y}{6}+\frac{x-y}{10}=3¢Ù}\\{\frac{x+y}{6}-\frac{x-y}{10}=-1¢Ú}\end{array}\right.$£¬Äã»á½âÕâ¸ö·½³Ì×éÂð£¿Ð¡Ã÷¡¢Ð¡¸Õ¡¢Ð¡·¼ÕùÂÛÁËÒ»»á¶ù£¬ËûÃÇ·Ö±ðд³öÁËÒ»ÖÖ·½·¨£º
СÃ÷£º°ÑÔ·½³Ì×éÕûÀíµÃ$\left\{\begin{array}{l}{8x+2y=90¢Û}\\{2x+8y=-30¢Ü}\end{array}\right.$
¢Ü¡Á4-¢ÛµÃ30y=-210£¬ËùÒÔy=-7
°Ñy=-7´úÈë¢ÛµÃ8x=104£¬ËùÒÔx=13£¬
¼´$\left\{\begin{array}{l}{x=13}\\{y=-7}\end{array}\right.$
С¸Õ£ºÉè$\frac{x+y}{6}$=m£¬$\frac{x-y}{10}$=n£¬Ôò$\left\{\begin{array}{l}{m+n=3¢Û}\\{m-n=-1¢Ü}\end{array}\right.$
¢Û+¢ÜµÃm=1£¬
¢Û-¢ÜµÃm=2£¬
¼´$\left\{\begin{array}{l}{\frac{x+y}{6}=1}\\{\frac{x-y}{10}=2}\end{array}\right.$£¬ËùÒÔ$\left\{\begin{array}{l}{x+y=6}\\{x-y=20}\end{array}\right.$£¬ËùÒÔ$\left\{\begin{array}{l}{x=13}\\{y=-7}\end{array}\right.$£®
С·¼£º¢Ù+¢ÚµÃ$\frac{2£¨x+y£©}{6}$=2£¬¼´x+y=6£®¢Û
¢Ù-¢ÚµÃ$\frac{2£¨x-y£©}{10}$=4£¬¼´x-y=20£®¢Ü
¢Û¢Ü×é³É·½³Ì×éµÃx=13
¢Û-¢ÜµÃy=-7£¬¼´$\left\{\begin{array}{l}{x=13}\\{y=-7}\end{array}\right.$£®
ÀÏʦ¿´¹ýºó£¬·Ç³£¸ßÐË£¬ÌرðÊÇС¸ÕµÄ·½·¨¶ÀÌØ£¬ÏñС¸ÕµÄÕâÖÖ·½·¨½Ð×ö»»Ôª·¨£¬ÄãÄÜÓû»Ôª·¨½âÏÂÁз½³Ì×éÂð£¿
$\left\{\begin{array}{l}{\frac{3x-2y}{6}+\frac{2x+3y}{7}=1}\\{\frac{3x-2y}{6}-\frac{2x+3y}{7}=5}\end{array}\right.$£®
·ÖÎö Éè$\frac{3x-2y}{6}$=m£¬$\frac{2x+3y}{7}$=n£¬·½³Ì×éÕûÀíºóÇó³ömÓënµÄÖµ£¬¼´¿ÉÈ·¶¨³öxÓëyµÄÖµ£®
½â´ð ½â£ºÉè$\frac{3x-2y}{6}$=m£¬$\frac{2x+3y}{7}$=n£¬
·½³Ì×éÕûÀíµÃ£º$\left\{\begin{array}{l}{m+n=1¢Ù}\\{m-n=5¢Ú}\end{array}\right.$£¬
¢Ù+¢ÚµÃ£º2m=6£¬¼´m=3£¬
¢Ù-¢ÚµÃ£º2n=-4£¬¼´n=-2£¬
¼´$\left\{\begin{array}{l}{\frac{3x-2y}{6}=3}\\{\frac{2x+3y}{7}=-2}\end{array}\right.$£¬
ÕûÀíµÃ£º$\left\{\begin{array}{l}{3x-2y=18}\\{2x+3y=-14}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{x=2}\\{y=-6}\end{array}\right.$£®
µãÆÀ ´ËÌ⿼²éÁ˽â¶þÔªÒ»´Î·½³Ì×飬ÀûÓÃÁËÏûÔªµÄ˼Ï룬ÏûÔªµÄ·½·¨ÓУº´úÈëÏûÔª·¨Óë¼Ó¼õÏûÔª·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
20£®
Èçͼ£¬½«Õý·½ÐÎOABC·ÅÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬OÊÇԵ㣬AµÄ×ø±êΪ£¨1£¬$\sqrt{3}$£©£¬ÔòµãCµÄ×ø±êΪ£¨¡¡¡¡£©
| A£® | £¨-1£¬$\sqrt{3}$£© | B£® | £¨-$\sqrt{3}$£¬1£© | C£® | £¨-2£¬1£© | D£® | £¨-1£¬2£© |