题目内容
13.(1)图中△ADF可以绕点A按顺时针方向旋转90°后能与△ABM重合;
(2)用x、y的代数式表示△AEM与△EFC的面积.
分析 (1)利用旋转的定义求解;
(2)由于△AEM≌△AEF,则EF=EM,即x=BE+BM=DF+BE,则根据三角形面积公式得到S△AME=$\frac{1}{2}$xy,然后利用S△CEF=S正方形ABCD-S△AEF-S△ABE-S△ADF可表示出△EFC的面积.
解答 解:(1)图中△ADF可以绕点A按顺时针方向旋转90°后能够与△ABM重合;
故答案为:A、90°,ABM.
(2)∵△AEM与△AEF恰好关于所在直线成轴对称,
∴EF=EM,
即x=BE+BM,
∵BM=DF,
∴x=DF+BE,
∴S△AME=$\frac{1}{2}$•AB•ME=$\frac{1}{2}$xy,
S△CEF=S正方形ABCD-S△AEF-S△ABE-S△ADF
=y2-$\frac{1}{2}$xy-$\frac{1}{2}$•y•BE-$\frac{1}{2}$•y•DF
=y2-$\frac{1}{2}$xy-$\frac{1}{2}$•y(BE+DF)
=y2-$\frac{1}{2}$xy-$\frac{1}{2}$•y•x
=y2-xy.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
练习册系列答案
相关题目
4.2017年元旦期间,某商场打出促销广告,如表所示.
小欣妈妈两次购物分别用了134元和490元.
(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?
(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.
| 优惠 条件 | 一次性购物不超过200元 | 一次性购物超过200元,但不超过500元 | 一次性购物超过500元 |
| 优惠 办法 | 没有优惠 | 全部按九折优惠 | 其中500元仍按九折优惠,超过500元部分按八折优惠 |
(1)小欣妈妈这两次购物时,所购物品的原价分别为多少?
(2)若小欣妈妈将两次购买的物品一次全部买清,则她是更节省还是更浪费?说说你的理由.