题目内容

10.如图,⊙O是△ABC 的外接圆,AB=AC,BD是⊙O的直径,PA∥BC,与DB的延长线交于点P,连接AD.
(1)求证:PA是⊙O的切线;
(2)若AB=$\sqrt{5}$,BC=4,求AD的长.

分析 (1)连接OA交BC于点E,根据垂径定理的推论求得OA⊥BC,然后根据平行线的性质证得∠PAO=90°,即可证得结论.
(2)根据勾股定理求得AE,得出tanC=$\frac{AE}{CE}=\frac{1}{2}$,根据∠D=∠C,得出tanD=$\frac{AB}{AD}$=$\frac{1}{2}$,从而求得AD的长.

解答 (1)证明:连接OA交BC于点E,
由AB=AC可得OA⊥BC,
∵PA∥BC,
∴∠PAO=∠BEO=90°.
∵OA为⊙O的半径,
∴PA为⊙O的切线.
(2)解:根据(1)可得CE=$\frac{1}{2}$BC=2.
Rt△ACE中,$AE=\sqrt{A{C^2}-C{E^2}}=1$,
∴tanC=$\frac{AE}{CE}=\frac{1}{2}$.
∵BD是直径,
∴∠BAD=90°,
又∵∠D=∠C,
∴tanD=$\frac{AB}{AD}$=$\frac{1}{2}$,
∴AD=$\frac{AB}{tanD}=2\sqrt{5}$.

点评 本题考查了切线的判定,勾股定理的应用,正切函数的应用等;经过半径的外端且垂直于这条半径的直线是圆的切线.在判定一条直线为圆的切线时,当已知条件中明确指出直线与圆有公共点时,常连接过该公共点的半径,证明该半径垂直于这条直线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网