题目内容

8.已知:如图?ABCD中,DM=BN,BE=DF,求证:四边形MENF是平行四边形.

分析 根据SAS可以证明△DMF≌△BNE.从而得到MF=NE,∠DFM=∠BEN.根据等角的补角相等,可以证明∠NEF=∠EFM,则EN∥FM.根据一组对边平行且相等的四边形是平行四边形即可证明.

解答 证明:在平行四边形ABCD中,AD∥BC,
∴∠ADB=∠CBD.
在△BNE和△DMF中,$\left\{\begin{array}{l}{BN=DM}&{\;}\\{∠CBD=∠ADB}&{\;}\\{BE=DF}&{\;}\end{array}\right.$,
∴△BNE≌△DMF(SAS).
∴MF=NE,∠DFM=∠BEN,
∴∠MFE=∠NEF,
∴EN∥FM.
∴四边形MENF是平行四边形.

点评 此题综合运用了平行四边形的性质和判定、全等三角形的判定与性质.熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网