题目内容

如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AC=4,BC=6,则tan∠ACD的值为( )

A. B. C. D.

A 【解析】∵∠ACB=90°,∴∠A+∠B=90°, ∵∠ADC=90°,∴∠A+∠ACD=90°, ∴∠ACD=∠B, ∵tanB =, ∴tan∠ACD =, 故选A.
练习册系列答案
相关题目

如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为__.

【解析】试题解析:由题意,中间正方形中直角三角形的面积为, ∴阴影部分的面积为1-, ∴点P落在图中阴影部分的概率是.

如图,已知线段AB,BC的垂直平分线l1,l2交于点M,则线段AM,CM的大小关系是(  )

A. AM>CM B. AM=CM C. AM<CM D. 无法确定

B 【解析】首先连接BM,然后根据l1是线段AB的垂直平分线判定AM=BM;类似的方法可得BM与CM的关系,最后利用等量代换即可解答本题. 【解析】 如图所示:连接BM, ∵l1是线段AB的垂直平分线, ∴AM=BM, ∵l2是线段BC的垂直平分线, ∴BM=CM, ∴AM=CM. 故选B.

如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=______度.

45 【解析】试题分析:根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,再根据等腰直角三角形的性质可求∠ABC=∠BAD=45°. 【解析】 ∵AD⊥BC于D,BE⊥AC于E ∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°, 又∵∠BFD=∠AFE(对顶角相等) ∴∠EAF=∠DBF, 在Rt△ADC和Rt△BDF中, , ...

如图,在Rt△ABC中,BC、AC、AB三边的长分别为a、b、c,则sinA=,cosA=,tanA=.我们不难发现:sin260°+cos260°=1,…,试探求sinA、cosA、tanA之间存在的一般关系,并说明理由.

sin2A+cos2A=1,tanA=,理由见解析. 【解析】试题分析:sin2A+cos2A=1,tanA=,根据三角函数的定义以及勾股定理通过推导即可得. 试题解析:sin2A+cos2A=1,tanA=,理由如下: ∵∠C=90°,∴a2+b2=c2,sinA=,cosA=,tanA=, ∴sin2A+cos2A=; tanA=..

如图,直线y=2x+2与y轴交于A点,与反比例函数y= (x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.

(1)求k的值;

(2)点N(a,1)是反比例函数y= (x>0)图象上的点,在x轴上是否存在点P,使得PM+PN最小?若存在,求出点P的坐标;若不存在,请说明理由.

(1)4;(2)P(,0) 【解析】试题分析:(1)根据直线解析式求A点坐标,得OA的长度;根据三角函数定义可求OH的长度,得点M的横坐标;根据点M在直线上可求点M的坐标.从而可求K的值; (2)根据反比例函数解析式可求N点坐标;作点N关于x轴的对称点N1,连接MN1与x轴的交点就是满足条件的P点位置.

如图,Rt△ABC中,∠A=90°,AD⊥BC于点D,若BD∶CD=3∶2,则tan∠B=_____________.

,

【解析】∵BD:CD=3:2,∴不妨取BD=3,CD=2, ∵Rt△ABC中,∠A=90°,AD⊥BC于点D,∴AD2=BD•CD=6,解得AD=, ∴tanB=, 故答案为: .

如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.

40° 【解析】试题分析:根据平行线的性质求出∠ACB的度数,根据角平分线定义求出即可. 试题解析: ∵ DE∥BC,∠AED =80°,∴ ∠EDC =∠BCD,∠ACB=∠AED=80° ∵ CD平分∠ACB, ∴ ∠BCD= ∠ACB=40°,∴ ∠EDC=∠BCD=40°

已知a+=5,则a2+的结果是___________.

23 【解析】由题意知=25,即a2++2=25,所以a2+=23.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网