题目内容

14.如果E,F分别是ABC的两边BA,CA延长线上的两点,且EF∥BC,BC=5,EF=2,BE=7,则AB的长为(  )
A.4B.5C.6D.7

分析 根据平行线分线段成比例定理得到比例式,求出$\frac{EA}{AB}$,计算即可.

解答 解:∵EF∥BC,BC=5,EF=2,
∴$\frac{EA}{AB}$=$\frac{EF}{BC}$=$\frac{2}{5}$,又BE=7,
∴AB=5,
故选:B.

点评 本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.

练习册系列答案
相关题目
17.定义:在平面内,我们把既有大小又有方向的量叫做平面向量.平面向量可以用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.其中大小相等,方向相同的向量叫做相等向量.
如以正方形ABCD的四个顶点中某一点为起点,另一个顶点为终点作向量,可以作出8个不同的向量:$\overrightarrow{AB}$、$\overrightarrow{BA}$、$\overrightarrow{AC}$、$\overrightarrow{CA}$、$\overrightarrow{AD}$、$\overrightarrow{DA}$、$\overrightarrow{BD}$、$\overrightarrow{DB}$(由于$\overrightarrow{AB}$和$\overrightarrow{DC}$是相等向量,因此只算一个).

(1)作两个相邻的正方形(如图一).以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2),试求f(2)的值;
(2)作n个相邻的正方形(如图二)“一字型”排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(n),试求f(n)的值;
(3)作2×3个相邻的正方形(如图三)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(2×3),试求f(2×3)的值;
(4)作m×n个相邻的正方形(如图四)排开.以其中的一个顶点为起点,另一个顶点为终点作向量,可以作出不同向量的个数记为f(m×n),试求f(m×n)的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网