题目内容

如图,在四边形ABCD中,∠BAD=∠B=∠C=90,AD=BC=20,AB=DC=16.将四边形ABCD沿直线AE折叠,使点D落在BC边上的点F处.

(1)求BF的长;

(2)求CE的长.

(1);(2) 【解析】试题分析:由折叠的性质可得:AF=AD=20,再由勾股定理可求出BF=12. (2)设CE=x,DE=EF=16-x,然后利用勾股定理得到,再解方程求出x即可. (1)∵△AFE是△ADE折叠得到的, ∴. 在Rt△ABE中, (2)∵△AFE是△ADE折叠得到的, ∴. 设,则 在Rt△EFC中, 即 解得...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网