题目内容
10.已知方程组$\left\{\begin{array}{l}{a_1}x+y={c_1}\\{a_2}x+y={c_2}\end{array}\right.$的解是$\left\{\begin{array}{l}x=5\\ y=10\end{array}\right.$;则关于x,y的方程组$\left\{\begin{array}{l}{a_1}x-y={a_1}+{c_1}\\{a_2}x-y={a_2}+{c_2}\end{array}\right.$的解是( )| A. | $\left\{\begin{array}{l}x=6\\ y=10\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=6\\ y=-10\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=-6\\ y=10\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=-6\\ y=-10\end{array}\right.$ |
分析 把$\left\{\begin{array}{l}x=5\\ y=10\end{array}\right.$代入方程组$\left\{\begin{array}{l}{a_1}x+y={c_1}\\{a_2}x+y={c_2}\end{array}\right.$得$\left\{\begin{array}{l}{5{a}_{1}+10={c}_{1}}\\{5{a}_{2}+10={c}_{2}}\end{array}\right.$,方程组$\left\{\begin{array}{l}{a_1}x-y={a_1}+{c_1}\\{a_2}x-y={a_2}+{c_2}\end{array}\right.$变形为:$\left\{\begin{array}{l}{{a}_{1}x-y=6{a}_{1}+10}\\{{a}_{2}x-y=6{a}_{2}+10}\end{array}\right.$,即可解答.
解答 解:把$\left\{\begin{array}{l}x=5\\ y=10\end{array}\right.$代入方程组$\left\{\begin{array}{l}{a_1}x+y={c_1}\\{a_2}x+y={c_2}\end{array}\right.$得:$\left\{\begin{array}{l}{5{a}_{1}+10={c}_{1}}\\{5{a}_{2}+10={c}_{2}}\end{array}\right.$,
∴方程组$\left\{\begin{array}{l}{a_1}x-y={a_1}+{c_1}\\{a_2}x-y={a_2}+{c_2}\end{array}\right.$变形为:$\left\{\begin{array}{l}{{a}_{1}x-y=6{a}_{1}+10}\\{{a}_{2}x-y=6{a}_{2}+10}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x=6}\\{y=-10}\end{array}\right.$对符合a1,a2,c1,c2都成立,
故选:B.
点评 本题考查了二元一次方程组的解,解决本题的关键是明确二元一次方程组的解的定义.
| A. | $\left\{\begin{array}{l}{x+y=500\\;}\\{5%x+4%y=4.5%}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+y=500\\;}\\{5%x+4%y=500×4.5%}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{x+y=500}\\{105%x+104%y=500+4.5%}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=500}\\{104%x+105%y=500×104.5%}\end{array}\right.$ |
| A. | -a5 | B. | a5 | C. | -a6 | D. | a6 |
| A. | 2+$\sqrt{3}$=2$\sqrt{3}$ | B. | 2x-2=$\frac{1}{2{x}^{2}}$ | C. | 3a2•2a3=6a6 | D. | a8÷a2=a6 |