题目内容
19.$\left\{\begin{array}{l}{x-3(x-2)≥4}\\{\frac{5x}{6}+1>\frac{x-3}{4}}\end{array}\right.$.
分析 分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.
解答 解:$\left\{\begin{array}{l}{x-3(x-2)≥4①}\\{\frac{5x}{6}+1>\frac{x-3}{4}②}\end{array}\right.$,
解不等式①得,x≤1,
解不等式②得,x>-3,
故不等式的解集为:-3<x≤1,
在数轴上表示为:![]()
点评 本题考查的是解一元一次不等式组及在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.
练习册系列答案
相关题目
9.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,CD是AB边上的高,则AD长为( )cm.
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{9}{5}$ |
10.已知方程组$\left\{\begin{array}{l}{a_1}x+y={c_1}\\{a_2}x+y={c_2}\end{array}\right.$的解是$\left\{\begin{array}{l}x=5\\ y=10\end{array}\right.$;则关于x,y的方程组$\left\{\begin{array}{l}{a_1}x-y={a_1}+{c_1}\\{a_2}x-y={a_2}+{c_2}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}x=6\\ y=10\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=6\\ y=-10\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=-6\\ y=10\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=-6\\ y=-10\end{array}\right.$ |