题目内容
9.解方程(1)3x2-6x-1=0
( 2)x2-5x-6=0
(3)(x-1)+(x+2)=6
(4)(x-3)2+2x(x-3)=0.
分析 (1)直接利用公式法解方程得出答案;
(2)直接利用十字相乘法分解因式得出答案;
(3)直接去括号,再合并同类项解方程得出答案;
(4)利用提取公因式法分解因式解方程得出答案.
解答 解:(1)3x2-6x-1=0
b2-4ac=36-4×3×(-1)=48>0,
故x=$\frac{6±4\sqrt{3}}{2×3}$=$\frac{3±2\sqrt{3}}{3}$,
解得:x1=$\frac{3+2\sqrt{3}}{3}$,x2=$\frac{3-2\sqrt{3}}{3}$;
( 2)x2-5x-6=0
(x-6)(x-1)=0,
解得:x1=6,x2=1;
(3)(x-1)+(x+2)=6
2x=5,
解得:x=$\frac{5}{2}$;
(4)(x-3)2+2x(x-3)=0
(x-3)(x-3+2x)=0,
解得:x1=3,x2=1.
点评 此题主要考查了因式分解法以及公式法解方程,正确掌握公式法解方程是解题关键.
练习册系列答案
相关题目
19.若A(-1,y1),B(1,y2),C(2,y3)为二次函数y=x2+4x-5的图象上的三点,则y1、y2、y3的大小关系是( )
| A. | y1<y2<y3 | B. | y2<y1<y3 | C. | y3<y1<y2 | D. | y1<y3<y2 |
14.在平面直角坐标系中,已知点A(-4,2),B(-6,-4),以原点O为位似中心,在原点的同一旁,把△ABO缩小,相似比为$\frac{1}{2}$,则点A的对应点A′的坐标是( )
| A. | (-2,1) | B. | (-8,4) | C. | (-4,1) | D. | (-2,2) |
18.
如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为( )
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |