ÌâÄ¿ÄÚÈÝ
8£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚµãA£¨a£¬b£©ºÍB£¨a£¬b¡ä£©£¬Èôb¡ä=$\left\{\begin{array}{l}{b£¬a¡Ý2}\\{-b£¬a£¼2}\end{array}\right.$£¬Ôò³ÆµãB¡ä£¨a£¬b¡ä£©ÊǵãA£¨a£¬b£©µÄ¡°Ïà°éµã¡±£®ÇëÄã½â¾öÏÂÁÐÎÊÌ⣺£¨1£©µã£¨3£¬-2£©µÄ¡°Ïà°éµã¡±ÊÇ£¨3£¬-2£©£¬µã£¨$\sqrt{2}$£¬-1£©µÄ¡°Ïà°éµã¡±ÊÇ£¨$\sqrt{2}$£¬1£©£®
£¨2£©ÒÑÖªµãCÔÚº¯Êýy=-x+2µÄͼÏóÉÏ£¬
¢ÙÒÑÖªµãCÔÚº¯Êýy=-x+2£¨x¡Ü-1£©µÄͼÏóÉÏ£¬ÔòµãCµÄ¡°Ïà°éµã¡±C¡äÔÚº¯Êýy=x-2µÄͼÏóÉÏ£»
¢ÚÒÑÖªµãCÔÚº¯Êýy=-x+2£¨-2¡Üx¡Üm£¬m£¾-2£©µÄͼÏóÉÏ£¬ÔòµãCµÄ¡°Ïà°éµã¡±C¡äµÄ×Ý×ø±êc¡äÂú×ã-4¡Üc¡ä¡Ü1£¬ÇómµÄȡֵ·¶Î§£®
·ÖÎö £¨1£©ÏÈÈ·¶¨aµÄ´óС·¶Î§£¬½øÒ»²½¸ù¾Ý¡°Ïà°éµã¡±µÄ¶¨Òå¼´¿ÉÇó½â£»
£¨2£©¢Ù¸ù¾Ýb¡ä=$\left\{\begin{array}{l}{b£¬a¡Ý2}\\{-b£¬a£¼2}\end{array}\right.$£¬Ôò³ÆµãB¡ä£¨a£¬b¡ä£©ÊǵãA£¨a£¬b£©µÄ¡°Ïà°éµã¡±£¬¿ÉµÃµãCµÄ¡°Ïà°éµã¡±C¡äËùÔڵĺ¯Êý£»
¢Ú¸ù¾ÝµãCµÄ¡°Ïà°éµã¡±C¡äµÄ×Ý×ø±êc¡äÂú×ã-4¡Üc¡Ü1£¬·ÖÇé¿öÌÖÂÛ¿ÉÇómµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©µã£¨3£¬-2£©µÄ¡°Ïà°éµã¡±Êǵ㣨3£¬-2£©£¬µã£¨$\sqrt{2}$£¬-1£©µÄ¡°Ïà°éµã¡±ÊÇ£¨$\sqrt{2}$£¬1£©£®
£¨2£©¢Ù¡ßº¯Êýy=-x+2£¨x¡Ü-1£©£¬
¡àµãCµÄ¡°Ïà°éµã¡±C¡äÔÚº¯Êý-y=-x+2£¬¼´y=x-2ÉÏ£»
¢Ú¡ßµãCµÄ¡°Ïà°éµã¡±C¡äµÄ×Ý×ø±êc¡äÂú×ã-4¡Üc¡ä¡Ü1£¬
¡àµ±m¡Ý2ʱ£¬µãCµÄ¡°Ïà°éµã¡±C¡äµÄºá×ø±êΪ3¡Üm£¼6£»
µ±m£¼2ʱ£¬µãCµÄ¡°Ïà°éµã¡±C¡äµÄºá×ø±êΪ-2£¼m¡Ü1£®
¹Ê´ð°¸Îª£¨3£¬-2£©£¬£¨$\sqrt{2}$£¬1£©£»x-2£®
µãÆÀ ±¾Ì⿼²éÁËÔÚж¨ÒåÏÂÒ»´Îº¯ÊýÔÚÖ¸¶¨Çø¼äÉϵÄ×Ô±äÁ¿Ó뺯ÊýÖµÖ®¼äµÄ¶ÔÓ¦Çé¿ö£¬½âÌâµÄ¹Ø¼üÊÇÀí½âÔÚж¨ÒåÏÂxÓëy¡äµÄÏàÓ¦Çø¼ä£®
| A£® | 12£º15£º20 | B£® | 3£º4£º5 | C£® | 4£º3£º5 | D£® | 5£º4£º3 |