ÌâÄ¿ÄÚÈÝ
13£®£¨1£©Í¼ÖУ¬¡ÏOCE=¡ÏBCD£»
£¨2£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨3£©Å×ÎïÏßÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹S¡÷PAE=$\frac{1}{2}$S¡÷CDE£¿Èô´æÔÚ£¬Ö±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©¸ù¾ÝÐýתµÄÐÔÖÊÒ׵áÏOCE=¡ÏBCD£»
£¨2£©×÷CH¡ÍOEÓÚH£¬Èçͼ£¬¸ù¾ÝÐýתµÄÐÔÖʵÃCO=CE£¬CB=CD£¬OB=DE£¬ÔòÀûÓõÈÑüÈý½ÇÐεÄÐÔÖʵÃOH=HE=1£¬ÔòEµã×ø±êΪ£¨2£¬0£©£¬ÉèB£¨m£¬0£©£¬D£¨$\frac{19}{5}$£¬n£©£¬ÀûÓÃÁ½µã¼äµÄ¾àÀ빫ʽµÃCD2=£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2£¬CB2=£¨1-m£©2+22£¬DE2=£¨2-$\frac{19}{5}$£©2+n2£¬ËùÒÔ£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2=£¨1-m£©2+22£¬£¨2-$\frac{19}{5}$£©2+n2=m2£¬½â¹ØÓÚm¡¢nµÄ·½³Ì×éµÃµ½m=3£¬n=-$\frac{12}{5}$£¬ÔòB£¨3£¬0£©£¬È»ºóÉè¶¥µãʽy=a£¨x-1£©2-2£¬ÔÙ°ÑBµã×ø±ê´úÈëÇó³öa¼´¿ÉµÃµ½Å×ÎïÏß½âÎöʽ£»
£¨3£©ÏÈÀûÓÃÅ×ÎïÏߵĶԳÆÐԵõ½A£¨-1£¬0£©£¬ÔÙ¸ù¾ÝÐýתµÄÐÔÖʵá÷CDE¡Õ¡÷CBO£¬ÔòS¡÷CDE=S¡÷CBO=3£¬ÉèP£¨t£¬$\frac{1}{2}$t2-t-$\frac{3}{2}$£©£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½µÃµ½$\frac{1}{2}$•3•|$\frac{1}{2}$t2-t-$\frac{3}{2}$|=$\frac{1}{2}$•3£¬Ôò$\frac{1}{2}$t2-t-$\frac{3}{2}$=1»ò$\frac{1}{2}$t2-t-$\frac{3}{2}$=-1£¬È»ºó·Ö±ð½â¹ØÓÚtµÄÒ»Ôª¶þ´Î·½³ÌÇó³öt£¬´Ó¶ø¿ÉµÃµ½Âú×ãÌõ¼þµÄPµã×ø±ê£®
½â´ð ½â£º£¨1£©¡ß¡÷CDEÈÆµãCÐýתµ½¡÷CBO£¬
¡à¡ÏOCE=¡ÏBCD£»
¹Ê´ð°¸ÎªBCD£»
£¨2£©×÷CH¡ÍOEÓÚH£¬Èçͼ£¬
¡ß¡÷CDEÈÆµãCÐýתµ½¡÷CBO£¬
¡àCO=CE£¬CB=CD£¬OB=DE£¬
¡àOH=HE=1£¬
¡àOE=2£¬
¡àEµã×ø±êΪ£¨2£¬0£©£¬
ÉèB£¨m£¬0£©£¬D£¨$\frac{19}{5}$£¬n£©£¬
¡ßCD2=£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2£¬CB2=£¨1-m£©2+22£¬DE2=£¨2-$\frac{19}{5}$£©2+n2£¬
¡à£¨1-$\frac{19}{5}$£©2+£¨-2-n£©2=£¨1-m£©2+22£¬£¨2-$\frac{19}{5}$£©2+n2=m2£¬
¡àm=3£¬n=-$\frac{12}{5}$£¬
¡àB£¨3£¬0£©£¬
ÉèÅ×ÎïÏß½âÎöʽΪy=a£¨x-1£©2-2£¬![]()
°ÑB£¨3£¬0£©´úÈëµÃ4a-2=0£¬½âµÃa=$\frac{1}{2}$£¬
¡àÅ×ÎïÏß½âÎöʽΪy=$\frac{1}{2}$£¨x-1£©2-2£¬¼´y=$\frac{1}{2}$x2-x-$\frac{3}{2}$£»
£¨3£©´æÔÚ£®
AÓëµãB¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬
¡àA£¨-1£¬0£©£¬
¡ß¡÷CDEÈÆµãCÐýתµ½¡÷CBO£¬
¡à¡÷CDE¡Õ¡÷CBO£¬
¡àS¡÷CDE=S¡÷CBO=$\frac{1}{2}$•2•3=3£¬
ÉèP£¨t£¬$\frac{1}{2}$t2-t-$\frac{3}{2}$£©£¬
¡ßS¡÷PAE=$\frac{1}{2}$S¡÷CDE£¬
¡à$\frac{1}{2}$•3•|$\frac{1}{2}$t2-t-$\frac{3}{2}$|=$\frac{1}{2}$•3£¬
¡à$\frac{1}{2}$t2-t-$\frac{3}{2}$=1»ò$\frac{1}{2}$t2-t-$\frac{3}{2}$=-1£¬
½â·½³Ì$\frac{1}{2}$t2-t-$\frac{3}{2}$=1µÃt1=1+$\sqrt{6}$£¬t2=1-$\sqrt{6}$£¬´ËʱPµã×ø±êΪ£¨1+$\sqrt{6}$£¬1£©»ò£¨1-$\sqrt{6}$£¬1£©£»
½â·½³Ì$\frac{1}{2}$t2-t-$\frac{3}{2}$=-1µÃt1=1+$\sqrt{2}$£¬t2=1-$\sqrt{2}$£¬´ËʱPµã×ø±êΪ£¨1+$\sqrt{2}$£¬-1£©»ò£¨1-$\sqrt{2}$£¬-1£©£»
×ÛÉÏËùÊö£¬Âú×ãÌõ¼þµÄPµã×ø±êΪ£¨1+$\sqrt{6}$£¬1£©»ò£¨1-$\sqrt{6}$£¬1£©»ò£¨1+$\sqrt{2}$£¬-1£©»ò£¨1-$\sqrt{2}$£¬-1£©£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖʺÍÐýתµÄÐÔÖÊ£»»áÀûÓôý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£¬¼ÇסÁ½µã¼äµÄ¾àÀ빫ʽ£®
| n=1 | a1=$\sqrt{2}$+2$\sqrt{3}$ | b1=$\sqrt{3}$+2 | c1=1+2$\sqrt{2}$ |
| n=2 | a2=b1+2c1 | b2=c1+2a1 | c2=a1+2b1 |
| n=3 | a3=b2+2c2 | b3=c2+2a2 | c3=a2+2b2 |
| ¡ | ¡ | ¡ | ¡ |
£¨2£©Âú×ã$\frac{{{a_n}+{b_n}+{c_n}}}{{\sqrt{3}+\sqrt{2}}}¡Ý81£¨\sqrt{3}-\sqrt{2}+1£©$µÄn¿ÉÒÔÈ¡µÃµÄ×îСÕýÕûÊýÊÇ4£®