题目内容

16.如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点.
(1)求证:CE=DF.
(2)连接DE、EF,证明四边形CDEF为矩形.

分析 (1)利用三角形中位线定理,直角三角形斜边中线的性质即可证明.
(2)只要证明四边形CDEF是平行四边形即可.

解答 (1)证明:∵AD=DC,CF=FB,
∴DF=$\frac{1}{2}$AB,
∵△ACB是直角三角形,AE=EB,
∴CE=$\frac{1}{2}$AB,
∴CE=DF.

(2)证明:连接DE、EF,如图所示.
∵D、E、F分别是AC、AB、BC的中点,
∴DE、EF为△ABC的中位线,
∴DE∥BC,EF∥AC,
∴四边形CDEF为平行四边形.
∵∠ACB=90°,
∴平行四边形CDEF为矩形.

点评 本题考查三角形中位线定理、直角三角形斜边中线的性质、平行四边形的判定.矩形的判定等知识,解题的关键是熟练掌握三角形中位线定理,直角三角形斜边中线的性质,掌握矩形的判定方法,属于中考常考题型.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网