ÌâÄ¿ÄÚÈÝ
5£®ÔĶÁ²ÄÁϲ¢½â¾öÎÊÌ⣺$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{£¨\sqrt{2}+1£©£¨\sqrt{2}-1£©}$=$\frac{\sqrt{2}-1}{£¨{\sqrt{2}£©}^{2}-{1}^{2}}$=$\sqrt{2}$-1£¬ÏñÉÏÊö½âÌâ¹ý³ÌÖУ¬$\sqrt{2}$+1Óë$\sqrt{2}$-1Ïà³ËµÄ»ý²»º¬¶þ´Î¸ùʽ£¬ÎÒÃÇ¿ÉÒÔ½«ÕâÁ½¸öʽ×Ó³ÆÎª»¥ÎªÓÐÀí»¯Òòʽ£¬ÉÏÊö½âÌâ¹ý³ÌÒ²³ÆÎª·ÖĸÓÐÀí»¯£®£¨1£©½«ÏÂÁÐʽ×Ó½øÐзÖĸÓÐÀí»¯£º¢Ù$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$£»¢Ú$\frac{1}{\sqrt{3}-\sqrt{2}}$=$\sqrt{3}$+$\sqrt{2}$£»
£¨2£©»¯¼ò£º$\frac{1}{\sqrt{3}+1}$+$\frac{1}{\sqrt{5}+\sqrt{3}}$£®
·ÖÎö ¸ù¾ÝÌâÒâ¼´¿É½øÐзÖĸÓÐÀí»¯
½â´ð ½â£º£¨1£©$\frac{\sqrt{3}}{3}$£»$\sqrt{3}$+$\sqrt{2}$
£¨2£©Ôʽ=$\frac{\sqrt{3}-1}{£¨\sqrt{3}+1£©£¨\sqrt{3}-1£©}$+$\frac{\sqrt{5}-\sqrt{3}}{£¨\sqrt{5}+\sqrt{3}£©£¨\sqrt{5}-\sqrt{3}£©}$
=$\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}$
=$\frac{\sqrt{5}-1}{2}$
¹Ê´ð°¸Îª£º£¨1£©$\frac{\sqrt{3}}{3}$£»$\sqrt{3}$+$\sqrt{2}$
µãÆÀ ±¾Ì⿼²é·ÖĸÓÐÀí»¯£¬½âÌâµÄ¹Ø¼üÊÇÕýÈ·Àí½âÌ⣬ÊìÁ·ÔËÓÃÆ½·½²î¹«Ê½£¬±¾ÌâÊôÓÚ»ù´¡ÌâÐÍ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®Èô¼×ÊýΪx£¬ÒÒÊýΪy£¬Ôò¡°¼×ÊýµÄ3±¶±ÈÒÒÊýµÄÒ»°ëÉÙ2¡±Áгɷ½³ÌÊÇ£¨¡¡¡¡£©
| A£® | 3x+$\frac{1}{2}$y=2 | B£® | 3x-$\frac{1}{2}$y=2 | C£® | -3x+$\frac{1}{2}$y=2 | D£® | 3x=$\frac{1}{2}$y+2 |
13£®
ÔÚ¶¯»Æ¬¡¶Ðܳöû¡·ÖУ¬ÓÐÒ»´Î¹âͷǿ׷¸ÏÐÜ´ó£¬ÔÚ¾àÀë¹âÍ·Ç¿¼Ò100Ã׵ĵط½×·ÉÏÁËÐÜ´ó£¬ÏÂͼ·´Ó³ÁËÕâÒ»¹ý³Ì£¬ÆäÖÐs±íʾ¹âÍ·Ç¿¼ÒµÄ¾àÀ룬t±íʾ¹âͷǿ׷¸ÏµÄʱ¼ä£¬¸ù¾ÝÏà¹ØÐÅÏ¢£¬ÒÔÏÂ˵·¨´íÎóµÄÊÇ£¨¡¡¡¡£©
| A£® | ¿ªÊ¼ÐÜ´óÓë¹âͷǿ֮¼äµÄ¾àÀëÊÇ30Ã× | |
| B£® | ¹âÍ·Ç¿ÅÜÁË60Ã××·ÉÏÐÜ´ó | |
| C£® | 15Ãëºó¹âͷǿ׷ÉÏÁËÐÜ´ó | |
| D£® | ¹âͷǿ׷ÉÏÐÜ´óʱ£¬ÐÜ´óÅÜÁË40Ã× |