题目内容
13.有四根细木棒,长度分别为3cm,5cm,7cm,9cm,则随机抽出三根木棒,能够组成三角形的概率是( )| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
分析 利用列举法得到所有四种可能的结果数,再根据三角形三边的关系得到能够组成三角形的结果数,然后根据概率公式求解.
解答 解:从四根细木棒中随机抽出三根木棒,所有结果为3、5、7,3、5、9,3、7、9,5、7、9,其中能够组成三角形的结果数为3,
所有能够组成三角形的概率=$\frac{3}{4}$.
故选D.
点评 本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了三角形三边的关系.
练习册系列答案
相关题目
1.在△ABC中,已知∠A=2∠B=3∠C,则三角形是( )
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 形状无法确定 |
5.
如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是( )
| A. | AE、BF是△ABC的内角平分线 | B. | 点O到△ABC三边的距离相等 | ||
| C. | CG也是△ABC的一条内角平分线 | D. | AO=BO=CO |