题目内容

4.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c-m=9没有实数根,有下列结论:
①b2-4ac>0;②abc<0;③m>2.
其中,正确结论的个数是(  )
A.0B.1C.2D.3

分析 根据抛物线与x轴的交点个数对①进行判断;由抛物线开口方向得a<0,由抛物线的对称轴在y轴的右侧得b>0,由抛物线与y轴的交点在x轴上方得c>0,则可对②进行判断;由ax2+bx+c-m=0没有实数根得到抛物线y=ax2+bx+c与直线y=m没有公共点,加上二次函数的最大值为2,则m>2,于是可对③进行判断.

解答 解:∵抛物线与x轴有2个交点,
∴b2-4ac>0,故①正确;

∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴在y轴的右侧,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,故②正确;

∵ax2+bx+c-m=9没有实数根,
即抛物线y=ax2+bx+c与直线y=m+9没有公共点,
∵二次函数的最大值为2,
∴m>-7,故③错误.
故选:C.

点评 主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网