ÌâÄ¿ÄÚÈÝ
9£®¶þ´Îº¯Êýy=ax2+bx+c£¨a£¬b£¬cΪ³£Êý£¬ÇÒa¡Ù0£©ÖеÄxÓëyµÄ²¿·Ö¶ÔÓ¦ÖµÈç±í£º| X | -1 | 0 | 1 | 3 |
| y | -$\frac{13}{5}$ | 3 | $\frac{29}{5}$ | 3 |
£¨1£©abc£¼0£»
£¨2£©µ±x£¾1ʱ£¬yµÄÖµËæxÖµµÄÔö´ó¶ø¼õС£»
£¨3£©16a+4b+c£¼0£»
£¨4£©Å×ÎïÏßÓë×ø±êÖáÓÐÁ½¸ö½»µã£»
£¨5£©x=3ÊÇ·½³Ìax2+£¨b-1£©x+c=0µÄÒ»¸ö¸ù£»
ÆäÖÐÕýÈ·µÄ¸öÊýΪ£¨¡¡¡¡£©
| A£® | 5¸ö | B£® | 4¸ö | C£® | 3¸ö | D£® | 2¸ö |
·ÖÎö £¨1£©ÀûÓôý¶¨ÏµÊý·¨Çó³ö¶þ´Îº¯Êý½âÎöʽΪy=-$\frac{7}{5}$x2+$\frac{21}{5}$x+3£¬¼´¿ÉÅж¨ÕýÈ·£¬
£¨2£©ÇóµÃ¶Ô³ÆÖᣬ¼´¿ÉÅж¨´Ë½áÂÛ´íÎó£»
£¨3£©Óɵ±x=4ºÍx=-1ʱ¶ÔÓ¦µÄº¯ÊýÖµÏàͬ£¬¼´¿ÉÅж¨½áÂÛÕýÈ·£»
£¨4£©ÓɱíÖеÄÊý¾Ý¼´¿ÉÅж¨ÕýÈ·£»
£¨5£©µ±x=3ʱ£¬¶þ´Îº¯Êýy=ax2+bx+c=3£¬¼´¿ÉÅж¨ÕýÈ·£®
½â´ð ½â£º£¨1£©¡ßx=-1ʱy=-$\frac{13}{5}$£¬x=0ʱ£¬y=3£¬x=1ʱ£¬y=$\frac{29}{5}$£¬
¡à$\left\{\begin{array}{l}{a-b+c=-\frac{13}{5}}\\{c=3}\\{a+b+c=\frac{29}{5}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=-\frac{7}{5}}\\{b=\frac{21}{5}}\\{c=3}\end{array}\right.$
¡àabc£¼0£¬¹ÊÕýÈ·£»
£¨2£©¡ßy=-$\frac{7}{5}$x2+$\frac{21}{5}$x+3£¬
¡à¶Ô³ÆÖáΪֱÏßx=-$\frac{\frac{21}{5}}{2¡Á£¨-\frac{7}{5}£©}$=$\frac{3}{2}$£¬
ËùÒÔ£¬µ±x£¾$\frac{3}{2}$ʱ£¬yµÄÖµËæxÖµµÄÔö´ó¶ø¼õС£¬¹Ê´íÎó£»
£¨3£©¡ß¶Ô³ÆÖáΪֱÏßx=$\frac{3}{2}$£¬
¡àµ±x=4ºÍx=-1ʱ¶ÔÓ¦µÄº¯ÊýÖµÏàͬ£¬
¡à16a+4b+c£¼0£¬¹ÊÕýÈ·£»
£¨4£©ÓɱíÖеÄÊý¾Ý¿ÉÖª£¬Å×ÎïÏßÓë×ø±êÖáÓÐÁ½¸ö½»µã£¬ÓëYÖáÓÐÒ»¸ö½âµÃ£¬¹Ê´íÎó£»
£¨5£©µ±x=3ʱ£¬¶þ´Îº¯Êýy=ax2+bx+c=3£¬
¡àx=3ÊÇ·½³Ìax2+£¨b-1£©x+c=0µÄÒ»¸ö¸ù£¬¹ÊÕýÈ·£»
×ÛÉÏËùÊö£¬½áÂÛÕýÈ·µÄÊǢ٢ۢݣ®
¹ÊÑ¡C£®
µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄÐÔÖÊ£¬Ö÷ÒªÀûÓÃÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯Êý½âÎöʽ£¬¶þ´Îº¯ÊýµÄÔö¼õÐÔ£¬¶þ´Îº¯ÊýÓë²»µÈʽ£¬¸ù¾Ý±íÖÐÊý¾ÝÇó³ö¶þ´Îº¯Êý½âÎöʽÊǽâÌâµÄ¹Ø¼ü£®
| A£® | $\frac{OA¡ä}{OA}$=$\frac{OC}{OC¡ä}$ | B£® | $\frac{A¡äB¡ä}{AB}$=$\frac{B¡äC¡ä}{BC}$ | C£® | $\frac{A¡äC¡ä}{AC}$=$\frac{OC}{OC¡ä}$ | D£® | $\frac{AB}{A¡äB¡ä}$=$\frac{OC¡ä}{OC}$ |
| A£® | ¡ÏEDB | B£® | $\frac{1}{2}$¡ÏAFB | C£® | ¡ÏBED | D£® | $\frac{1}{2}$¡ÏABF |