题目内容
4.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0)(1)求抛物线的解析式;
(2)求抛物线的对称轴;
(3)求抛物线的顶点坐标.
分析 (1)根据抛物线y=-x2+bx+c经过点A(3,0),B(-1,0),直接得出抛物线的解析式为;y=-(x-3)(x+1),再整理即可,
(2)根据抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,即可得出答案;
(3)根据抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,即可得出答案.
解答 解:(1)∵抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).
∴抛物线的解析式为;y=-(x-3)(x+1),
即y=-x2+2x+3,
(2)∵抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,
∴抛物线的对称轴为x=1;
(3)∵抛物线的解析式为y=-x2+2x+3=-(x-1)2+4,
∴抛物线的顶点坐标为:(1,4).
点评 此题考查了用待定系数法求函数的解析式,用到的知识点是二次函数的解析式的形式,关键是根据题意选择合适的解析式.
练习册系列答案
相关题目
9.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:
下列结论:
(1)abc<0;
(2)当x>1时,y的值随x值的增大而减小;
(3)16a+4b+c<0;
(4)抛物线与坐标轴有两个交点;
(5)x=3是方程ax2+(b-1)x+c=0的一个根;
其中正确的个数为( )
| X | -1 | 0 | 1 | 3 |
| y | -$\frac{13}{5}$ | 3 | $\frac{29}{5}$ | 3 |
(1)abc<0;
(2)当x>1时,y的值随x值的增大而减小;
(3)16a+4b+c<0;
(4)抛物线与坐标轴有两个交点;
(5)x=3是方程ax2+(b-1)x+c=0的一个根;
其中正确的个数为( )
| A. | 5个 | B. | 4个 | C. | 3个 | D. | 2个 |
14.某公园门票价格如表:
某校七年级(1)、(2)两个班共有104名学生去公园,其中七年级(1)班不足50人,七年级(2)班超过50人,如果两个班都以班为单位分别购票,那么一共应付1240元.
(1)问七年级(1)班、(2)班各有学生多少人?
(2)如果两个班联合起来,作为一个团体购票,那么可节省多少元?
| 购票张数 | 1~50张 | 51~100张 | 100张以上 |
| 每张票的价格 | 13元 | 11元 | 9元 |
(1)问七年级(1)班、(2)班各有学生多少人?
(2)如果两个班联合起来,作为一个团体购票,那么可节省多少元?