题目内容

20.如图,矩形ABCD中,AB=2,BC=3,分别以A、D为圆心,1为半径画圆,E、F分别是⊙A、⊙D上的一动点,P是BC上的一动点,则PE+PF的最小值是(  )
A.2B.3C.4D.5

分析 以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆D′,连接AD′交BC于P,交⊙A、⊙D′于E、F′,连接PD,交⊙D于F,EF′就是PE+PF最小值;根据勾股定理求得AD′的长,即可求得PE+PF最小值.

解答 解:如图,以BC为轴作矩形ABCD的对称图形A′BCD′以及对称圆A′,连接A′D交BC于P,则DE′就是PE+PD最小值;
∵矩形ABCD中,AB=2,BC=3,圆A的半径为1,
∴A′D′=BC=3,AA′=2AB=4,AE=D′F′=1,
∴AD′=5,
EF′=5-2=3
∴PE+PF=PF′+PE=EF′=3,
故选B.

点评 本题考查了轴对称-最短路线问题,勾股定理的应用等,作出对称图形是本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网