题目内容

4.我国经典数学著作《九章算术》中有这样一道名题,就是“引葭赴岸”问题,(如图)题目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”
题意是:有一正方形池塘,边长为一丈,有棵芦苇长在它的正中央,高出水面部分有一尺长,把芦苇拉向岸边,恰好碰到岸沿,问水深和芦苇长各是多少?(小知识:1丈=10尺)
如果设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为x2+52=(x+1)2,.

分析 设水深x尺,则芦苇长为(x+1)尺,利用勾股定理列出方程求解即可.

解答 解:设水深为x尺,则芦苇长用含x的代数式可表示为(x+1)尺,根据题意列方程为x2+52=(x+1)2
故答案为:(x+1),x2+52=(x+1)2

点评 本题考查主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网