题目内容

17.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.
(1)求证:△ACD≌△AED;
(2)若E为AB中点,求∠B的度数.

分析 (1)由角平分线得出∠CAD=∠EAD,再由∠DEA=∠C和公共边,根据AAS证明△ACD≌△AED即可;
(2)由线段垂直平分线的性质得出AD=DB,由等腰三角形的性质得出∠B=∠EAD,因此∠CAD+∠EAD+∠B=90°,即可得出结果.

解答 (1)证明:∵AD平分∠CAB,
∴∠CAD=∠EAD,
∵DE⊥AB,
∴∠DEA=90°,
∴∠DEA=∠C,
在△ACD和△AED中,
$\left\{\begin{array}{l}{∠CAD=∠EAD}&{\;}\\{∠C=∠DEA}&{\;}\\{AD=AD}&{\;}\end{array}\right.$,
∴△ACD≌△AED(AAS).
(2)解:∵E为AB的中点,DE⊥AB,
∴AD=DB,
∴∠B=∠EAD,
∵∠CAD=∠EAD,
∴∠CAD=∠EAD=∠B,
∵∠CAD+∠EAD+∠B=90°,
∴∠B=30°.

点评 本题考查了全等三角形的判定与性质、线段垂直平分线的性质、角平分线的定义、等腰三角形的判定与性质;本题综合性强,证明三角形全等是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网