题目内容

7.如图,已知等边△ABC,D、E分别在 BC、AC上,且BD=CE,连接BE、AD交于F点.求证:∠AFE=60°.

分析 因为△ABC为等边三角形,所以∠ABD=∠BCE=60°,AB=AC=BC,又BD=CE,所以用“SAS”可判定△ABD≌△BCE,根据全等三角形的性质得出∠BAD=∠CBE,利用三角形外角性质解答即可;

解答 解:∵△ABC为等边三角形,
∴AB=AC=BC,∠ABD=∠BCE=60°,
在△ABD和△BCE中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABD=∠BCE=60°}\\{BD=CE}\end{array}\right.$,
∴△ABD≌△BCE(SAS);
∴∠BAD=∠CBE,
∵∠ADC=∠CBE+∠BFD=∠BAD+∠B,
∴∠BFD=∠B=∠AFE=60°.

点评 本题考查了全等三角形的判定和性质,关键是根据等边三角形的性质:等边三角形的三个内角都相等,且都等于60°;三条边相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网