题目内容

如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE是直角三角形时,t的值为
 
考点:相似三角形的判定与性质
专题:动点型,分类讨论
分析:由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.
解答:解:
在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,
∴AB=2BC=8cm,
∵D为BC中点,
∴BD=2cm,
∵0≤t<12,
∴E点的运动路线为从A到B,再从B到AB的中点,
按运动时间分为0≤t≤8和8<t<12两种情况,
①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,
当∠EDB=90°时,则有AC∥ED,
∵D为BC中点,
∴E为AB中点,
此时AE=4cm,可得t=4;
当∠DEB=90°时,
∵∠DEB=∠C,∠B=∠B,
∴△BED∽△BCA,
BE
BC
=
BD
AB
,即
8-t
4
=
2
8
,解得t=7;
②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;
综上可知t的值为4或7或9,
故答案为:4或7或9.
点评:本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网