题目内容
考点:相似三角形的判定与性质
专题:动点型,分类讨论
分析:由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,只有∠EDB=90°或∠DEB=90°,再结合△BDE和△ABC相似,可求得BE的长,则可求得t的值.
解答:解:
在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,
∴AB=2BC=8cm,
∵D为BC中点,
∴BD=2cm,
∵0≤t<12,
∴E点的运动路线为从A到B,再从B到AB的中点,
按运动时间分为0≤t≤8和8<t<12两种情况,
①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,
当∠EDB=90°时,则有AC∥ED,
∵D为BC中点,
∴E为AB中点,
此时AE=4cm,可得t=4;
当∠DEB=90°时,
∵∠DEB=∠C,∠B=∠B,
∴△BED∽△BCA,
∴
=
,即
=
,解得t=7;
②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;
综上可知t的值为4或7或9,
故答案为:4或7或9.
在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,
∴AB=2BC=8cm,
∵D为BC中点,
∴BD=2cm,
∵0≤t<12,
∴E点的运动路线为从A到B,再从B到AB的中点,
按运动时间分为0≤t≤8和8<t<12两种情况,
①当0≤t≤8时,AE=tcm,BE=BC-AE=(8-t)cm,
当∠EDB=90°时,则有AC∥ED,
∵D为BC中点,
∴E为AB中点,
此时AE=4cm,可得t=4;
当∠DEB=90°时,
∵∠DEB=∠C,∠B=∠B,
∴△BED∽△BCA,
∴
| BE |
| BC |
| BD |
| AB |
| 8-t |
| 4 |
| 2 |
| 8 |
②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;
综上可知t的值为4或7或9,
故答案为:4或7或9.
点评:本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.
练习册系列答案
相关题目