题目内容

12.如图,圆柱形水管内原有积水的水平面宽CD=20cm,水深GF=2cm,若水面上升2cm(即EG=2cm),则此时水面宽AB为(  )
A.8$\sqrt{3}$cmB.16$\sqrt{3}$cmC.8cmD.16cm

分析 连接OA、OC.设⊙O的半径是R,则OG=R-2,OE=R-4.根据垂径定理,得CG=10.在直角三角形OCG中,根据勾股定理求得R的值,再进一步在直角三角形OAE中,根据勾股定理求得AE的长,从而再根据垂径定理即可求得AB的长.

解答 解:如图所示,连接OA、OC.
设⊙O的半径是R,则OG=R-2,OE=R-4.
∵OF⊥CD,
∴CG=$\frac{1}{2}$CD=10cm.
在直角三角形COG中,根据勾股定理,得
R2=102+(R-2)2
解,得R=26.
在直角三角形AOE中,根据勾股定理,得
AE=$\sqrt{2{6}^{2}-2{2}^{2}}$=8$\sqrt{3}$cm.
根据垂径定理,得AB=16$\sqrt{3}$(cm),
故选B.

点评 本题考查了勾股定理,垂径定理的应用,能构造直角三角形是解此题的关键,注意:垂直于弦的直径平分弦.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网