题目内容
14.求证:∠EGF=90°
(1)把下列证明过程及理由补充完整.
(2 )请你用精炼准确的文字将上述结论总结出来.
证明:∵HG∥AB(已知)
∴∠1=∠3 (两直线平行,内错角相等)
又∵HG∥CD(已知)
∴∠2=∠4(同理)
∵AB∥CD(已知)
∴∠BEF+EFD=180° (两直线平行,同旁内角互补)
又∵EG平分∠BEF(已知)
∴∠1=$\frac{1}{2}$∠BEF
又∵FG平分∠EFD(已知)
∴∠2=$\frac{1}{2}$∠EFD (同理)
∴∠1+∠2=$\frac{1}{2}$(∠BEF+∠EFD)
∴∠1+∠2=90°
∴∠3+∠4=90°
即∠EGF=90°.
分析 此题首先由平行线的性质得出∠1=∠3,∠2=∠4,∠BEF+∠EFD=180°,再由EG平分∠BEF,FG平分∠EFD得出∠1+∠2=90°,然后通过等量代换证出∠EGF=90°.
解答 证明:∵HG∥AB(已知),
∴∠1=∠3,
又∵HG∥CD(已知),
∴∠2=∠4(两直线平行,内错角相等),
∵AB∥CD(已知),
∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补),
又∵EG平分∠BEF(已知),
∴∠1=$\frac{1}{2}$∠BEF(角平分线的定义),
又∵FG平分∠EFD(已知),
∴∠2=$\frac{1}{2}$∠EFD(角平分线的定义),
∴∠1+∠2=$\frac{1}{2}$(∠BEF+∠EFD),
∴∠1+∠2=90°,
∴∠3+∠4=90°(等量代换)
即∠EGF=90°.
故答案为:两直线平行,内错角相等,∠EFD,两直线平行,同旁内角互补,角平分线的定义,EFD,∠BEF.两直线平行,内错角相等;
∠EFD; 两直线平行,同旁内角互补;
∠BEF;角平分线的定义;
∠BEF;∠EFD;
两条平行线被第三条直线所截,一组同旁内角的平分线互相垂直.
点评 本题考查了平行线的性质及角平分线的定义,找到相应关系的角是解决问题的关键.
练习册系列答案
相关题目
2.下列长度的三条线段能组成三角形的是( )
| A. | 3,4,5 | B. | 2,3,5 | C. | 3,4,8 | D. | 4,4,9 |
9.若m=$\sqrt{40}$-2,则估计m的值所在的范围是( )
| A. | 1<m<2 | B. | 2<m<3 | C. | 3<m<4 | D. | 4<m<5 |