题目内容
12.解方程组:$\left\{\begin{array}{l}{3(x-1)=y+5}\\{\frac{y-1}{3}=\frac{x}{5}+1}\end{array}\right.$.分析 方程组整理后,利用加减消元法求出解即可.
解答 解:方程组整理得:$\left\{\begin{array}{l}{3x-y=8①}\\{3x-5y=-20②}\end{array}\right.$,
①-②得:4y=28,即y=7,
把y=7代入①得:x=5,
则方程组上的解为$\left\{\begin{array}{l}{x=5}\\{y=7}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目
2.下列各式:①${a^3}•{a^{-5}}=\frac{1}{a^2}$;②a3•a2=a6;③$\sqrt{{{(-5)}^2}}$=-5;④${(\frac{1}{3})^{-1}}$=3;⑤(π-3.1415)0=0,其中正确的是( )
| A. | ①④ | B. | ③④ | C. | ②③ | D. | ④⑤ |
3.下列方程组是二元一次方程组的是( )
| A. | $\left\{\begin{array}{l}{2x+3y=4}\\{2x+3=4(z+1)}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{\frac{10}{x}+3y=17}\\{8x-3y=1}\end{array}\right.$ | ||
| C. | $\left\{\begin{array}{l}{\frac{m}{2}=1}\\{2m+n=16}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{\frac{x+2y}{z}=1}\\{\frac{2x-y}{3}=1}\end{array}\right.$ |
17.有一列数如下排列-$\frac{\sqrt{2}}{2}$,-$\frac{\sqrt{3}}{4}$,$\frac{1}{4}$,-$\frac{\sqrt{5}}{16}$,-$\frac{\sqrt{6}}{32}$,$\frac{\sqrt{7}}{64}$…,则第2015个数是( )
| A. | $\frac{\sqrt{2015}}{{2}^{2015}}$ | B. | -$\frac{\sqrt{2015}}{{2}^{2015}}$ | C. | $\frac{\sqrt{2016}}{{2}^{2015}}$ | D. | -$\frac{\sqrt{2016}}{{2}^{2015}}$ |