题目内容

20.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形,B,C,E在同一条直线上,连接DC.
求证:DC⊥BE.

分析 根据等腰直角三角形的性质可得AB=AC,AE=AD,∠BAC=∠DAE=90°,再求出∠BAE=∠CAD,然后利用“边角边”证明△ABE和△ACD全等,根据全等三角形对应角相等可得∠ACD=∠B,再求出∠DCB=90°,最后根据垂直的定义证明即可.

解答 证明:∵△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠DAE=90°,
∴∠BAC+∠CAE=∠DAE+∠CAE,
即∠BAE=∠CAD,
在△ABE和△ACD中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AD=AE}\end{array}\right.$,
∴△ABE≌△ACD(SAS),
∴∠ACD=∠B,
∴∠DCB=∠ACB+∠ACD=∠ACB+∠B=90°,
∴DC⊥BE.

点评 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握三角形全等的判定方法以及性质是并准确确定出全等三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网