题目内容

9.如图,△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,B,C,D在同一直线上,连接EC.求证:EC⊥BD.

分析 先根据∠BAC+∠CAD=∠EAD+∠CAD,得出∠BAD=∠CAE,然后证明△ABD≌△ACE,再得出∠ACE=∠ABD=45°,∠BCA+∠ACE=90°,即可证明出EC⊥BD.

解答 解:∵在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴∠BAC+∠CAD=∠EAD+∠CAD,∠ABC=∠BCA=45°,
∴∠BAD=∠CAE,
在△ABD和△ACE 中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$
∴△ABD≌△ACE,
∴∠ACE=∠ABD=∠ABC=45°,
∴∠BCA+∠ACE=90°,
∴EC⊥BD.

点评 本题主要考查了全等三角形的判定与性质,解答本题的关键在于找出全等三角形并根据全等三角形的性质求出∠BCA+∠ACE=90°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网