ÌâÄ¿ÄÚÈÝ
2£®£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÈôMÊǵÚËÄÏóÏÞÅ×ÎïÏßÉÏÒ»¶¯µã£¬ÇÒºá×ø±êΪm£¬ÉèËıßÐÎOCMAµÄÃæ»ýΪs£®Çëд³ösÓëmÖ®¼äµÄº¯Êý¹ØÏµÊ½£¬²¢Çó³öµ±mΪºÎֵʱ£¬ËıßÐÎOCMAµÄÃæ»ý×î´ó£»
£¨3£©ÉèµãBÊÇxÖáÉϵĵ㣬PÊÇÅ×ÎïÏßÉϵĵ㣬ÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔA£¬B¡¢C£¬PËĵãΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ¿Èô´æÔÚ£¬Ö±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©ÀûÓÃÅ×ÎïÏߵĶԳÆÐԿɵõ½µãDµÄ×Ü±í£¬È»ºó½«A¡¢C¡¢DµÄ×ø±ê´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃa¡¢b¡¢cµÄÖµ£¬´Ó¶ø¿ÉµÃµ½¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÉèM£¨m£¬$\frac{3}{8}$x2-$\frac{3}{4}$x-3£©£¬|yM|=-$\frac{3}{8}$m2+$\frac{3}{4}$m+3£¬ÓÉS=S¡÷ACM+S¡÷OAM¿ÉµÃµ½SÓëmµÄº¯Êý¹ØÏµÊ½£¬È»ºóÀûÓÃÅä·½·¨¿ÉÇóµÃSµÄ×î´óÖµ£»
£¨3£©µ±ABΪƽÐÐËıßÐεıßʱ£¬ÔòAB¡ÎPC£¬ÔòµãPµÄ×Ý×ø±êΪ-3£¬½«y=-3´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãPµÄºá×ø±ê£»µ±ABΪ¶Ô½ÇÏßʱ£¬ABÓëCP»¥ÏàÆ½·Ö£¬ÔòµãPµÄ×Ý×ø±êΪ3£¬°Ñy=3´úÈëÅ×ÎïÏߵĽâÎöʽ¿ÉÇóµÃµãPµÄºá×ø±ê£®
½â´ð ½â£º£¨1£©¡ßA£¨4£¬0£©£¬¶Ô³ÆÖáÊÇÖ±Ïßx=l£¬
¡àD£¨-2£¬0£©£®
ÓÖ¡ßC£¨0£¬-3£©
¡à$\left\{\begin{array}{l}{c=-3}\\{16a+4b+c=0}\\{4a-2b+c=0}\end{array}\right.$
½âµÃ£®a=$\frac{3}{8}$£¬b=-$\frac{3}{4}$£¬c=-3£¬
¡à¶þ´Îº¯Êý½âÎöʽΪ£ºy=$\frac{3}{8}$x2-$\frac{3}{4}$x-3£®
£¨2£©Èçͼ1Ëùʾ£º![]()
ÉèM£¨m£¬$\frac{3}{8}$x2-$\frac{3}{4}$x-3£©£¬|yM|=-$\frac{3}{8}$m2+$\frac{3}{4}$m+3£¬
¡ßS=S¡÷ACM+S¡÷OAM
¡àS=$\frac{1}{2}$¡ÁOC¡Ám+$\frac{1}{2}$¡ÁOA¡Á|yM|=$\frac{1}{2}$¡Á3¡Ám+$\frac{1}{2}$¡Á4¡Á£¨-$\frac{3}{8}$m2+$\frac{3}{4}$m+3£©=-$\frac{3}{4}$m2+3m+6=-$\frac{3}{4}$£¨m-2£©2+9£¬
µ±m=2ʱ£¬s×î´óÊÇ9£®
£¨3£©µ±ABΪƽÐÐËıßÐεıßʱ£¬ÔòAB¡ÎPC£¬
¡àPC¡ÎxÖᣮ
¡àµãPµÄ×Ý×ø±êΪ-3£®
½«y=-3´úÈëµÃ£º$\frac{3}{8}$x2-$\frac{3}{4}$x-3=-3£¬½âµÃ£ºx=0»òx=2£®
¡àµãPµÄ×ø±êΪ£¨2£¬-3£©£®
µ±ABΪ¶Ô½ÇÏßʱ£®
¡ßABCPΪƽÐÐËıßÐΣ¬
¡àABÓëCP»¥ÏàÆ½·Ö£¬
¡àµãPµÄ×Ý×ø±êΪ3£®
°Ñy=3´úÈëµÃ£º$\frac{3}{8}$x2-$\frac{3}{4}$x-3=3£¬ÕûÀíµÃ£ºx2-2x-16=0£¬½âµÃ£ºx=1+$\sqrt{17}$»òx=1-$\sqrt{17}$£®
×ÛÉÏËùÊö£¬´æÔÚµãP£¨2£¬-3£©»òP£¨1+$\sqrt{17}$£¬3£©»òP£¨1-$\sqrt{17}$£¬3£©Ê¹µÃÒÔA£¬B¡¢C£¬PËĵãΪ¶¥µãµÄËıßÐÎΪƽÐÐËıßÐΣ®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢Åä·½·¨Çó¶þ´Îº¯ÊýµÄ×îÖµ¡¢Æ½ÐÐËıßÐεÄÐÔÖÊ£¬ÒÀ¾ÝƽÐÐËıßÐεÄÐÔÖʵõ½µãPµÄ×Ý×ø±êÊǽâÌâµÄ¹Ø¼ü£®
| A£® | 2 | B£® | 4 | C£® | 2$\sqrt{2}$ | D£® | 4$\sqrt{2}$ |
| ÉçÍÅÀà±ð | ÈËÊý | Õ¼×ÜÈËÊý±ÈÀý |
| ÇòÀà | 60 | m |
| Î赸 | 30 | 0.25 |
| ½¡ÃÀ²Ù | n | 0.15 |
| ÎäÊõ | 12 | 0.1 |
£¨2£©Ç벹ȫͳ¼ÆÍ¼£»
£¨3£©±»µ÷²éµÄ60¸öϲ»¶ÇòÀàͬѧÖÐÓÐ3ÈË×îϲ»¶×ãÇò£¬Èô¸ÃУÓÐ3000ÃûѧÉú£¬Çë¹À¼Æ¸ÃУ×îϲ»¶×ãÇòµÄÈËÊý£®