题目内容
18.分析 作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,根据轴对称确定最短路线问题可得MN′与AB的交点即为PM+PN的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠MOB=40°,然后求出∠BON=20°,再根据对称性可得∠BON′=∠BON=20°,然后求出∠MON′=60°,从而判断出△MON′是等边三角形,再根据等腰直角三角形的性质可得MN′=OA,即为PM+PN的最小值,从而求得△PMN周长的最小值.
解答
解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,
则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,
∵∠MAB=20°,
∴∠MOB=2∠MAB=2×20°=40°,
∵N是弧MB的中点,
∴∠BON=$\frac{1}{2}$∠MOB=$\frac{1}{2}$×40°=20°,
由对称性,∠N′OB=∠BON=20°,
∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,
∴△MON′是等边三角形,
∴MN′=OM=$\frac{1}{2}$AB=4,
∴△PMN周长的最小值=5.
故答案为:5.
点评 本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.
练习册系列答案
相关题目
13.已知圆内接四边形ABCD,且$\widehat{AB}$的度数:$\widehat{BC}$的度数:$\widehat{CD}$的度数:$\widehat{DA}$的度数为1:2:3:4,则∠A:∠B:∠C:∠D等于( )
| A. | 1:2:3:4 | B. | 4:3:2:1 | C. | 4:3:1:2 | D. | 5:7:5:3 |
7.
如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=2,MC=6,动点P在AB边上,连接PC,PM,则PC+PM的最小值是( )
| A. | 2$\sqrt{10}$ | B. | 8 | C. | 2$\sqrt{17}$ | D. | 10 |