题目内容

18.如图,AB是⊙O的直径,AB=8,点M在⊙O上,∠MAB=20°,N是弧MB的中点,P是直径AB上的一动点,若MN=1,则△PMN周长的最小值为5.

分析 作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,根据轴对称确定最短路线问题可得MN′与AB的交点即为PM+PN的最小时的点,根据在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍求出∠MOB=40°,然后求出∠BON=20°,再根据对称性可得∠BON′=∠BON=20°,然后求出∠MON′=60°,从而判断出△MON′是等边三角形,再根据等腰直角三角形的性质可得MN′=OA,即为PM+PN的最小值,从而求得△PMN周长的最小值.

解答 解:作点N关于AB的对称点N′,连接OM、ON、ON′、MN′,
则MN′与AB的交点即为PM+PN的最小时的点,PM+PN的最小值=MN′,
∵∠MAB=20°,
∴∠MOB=2∠MAB=2×20°=40°,
∵N是弧MB的中点,
∴∠BON=$\frac{1}{2}$∠MOB=$\frac{1}{2}$×40°=20°,
由对称性,∠N′OB=∠BON=20°,
∴∠MON′=∠MOB+∠N′OB=40°+20°=60°,
∴△MON′是等边三角形,
∴MN′=OM=$\frac{1}{2}$AB=4,
∴△PMN周长的最小值=5.
故答案为:5.

点评 本题考查了轴对称确定最短路线问题,在同圆或等圆中,同弧所对的圆心角等于圆周角的2倍的性质,作辅助线并得到△AOB′是等腰直角三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网