题目内容
9.下列方程组中,解为$\left\{{\begin{array}{l}{x=2}\\{y=-3}\end{array}}\right.$的是( )| A. | $\left\{{\begin{array}{l}{2x+3=0}\\{x+y=-1}\end{array}}\right.$ | B. | $\left\{{\begin{array}{l}{2x+y=1}\\{x-3y=-7}\end{array}}\right.$ | C. | $\left\{{\begin{array}{l}{x-y=5}\\{3x+2y=0}\end{array}}\right.$ | D. | $\left\{{\begin{array}{l}{x-2y=8}\\{5x+y=13}\end{array}}\right.$ |
分析 根据二元一次方程组的两个方程的公共解,叫做二元一次方程组的解进行分析.
解答 解:A、$\left\{{\begin{array}{l}{x=2}\\{y=-3}\end{array}}\right.$不满足2x+3=0,因此不是此方程组的解;
B、$\left\{{\begin{array}{l}{x=2}\\{y=-3}\end{array}}\right.$不满足x-3y=-7,因此不是此方程组的解;
C、$\left\{{\begin{array}{l}{x=2}\\{y=-3}\end{array}}\right.$同时满足两个方程,因此是此方程组的解;
D、$\left\{{\begin{array}{l}{x=2}\\{y=-3}\end{array}}\right.$不满足5x+y=13,因此不是此方程组的解;
故选:C.
点评 此题主要考查了二元一次方程组的解,关键是掌握方程组的解,同时满足两个方程,就是能使两个方程同时左右相等.
练习册系列答案
相关题目
1.二元一次方程组$\left\{\begin{array}{l}{x+y=4}\\{x-y=2}\end{array}\right.$的解是( )
| A. | $\left\{\begin{array}{l}{x=1}\\{y=3}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$ |