题目内容

17.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:
①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△ABG=S△AFG;⑤∠AGB+∠AED=145°.
其中正确的个数有4个.

分析 根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由Rt△ABG≌Rt△AFG,可得S△ABG=S△AFG;求得∠GAF=45°,∠AGB+∠AED=180°-∠GAF=135°.

解答 解:∵△AFE是由△ADE折叠得到,
∴AF=AD,∠AFE=∠AFG=∠D=90°,
又∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D,
∴AB=AF,∠B=∠AFG=90°,
在Rt△ABG和Rt△AFG中,
∵$\left\{\begin{array}{l}{AG=AG}\\{AB=AF}\end{array}\right.$,
∴Rt△ABG≌Rt△AFG(HL),
故①正确;
∵正方形ABCD中,AB=6,CD=3DE,
∵EF=DE=$\frac{1}{3}$CD=2,
设BG=FG=x,则CG=6-x.
在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2
解得x=3.
∴BG=3,CG=6-3=3;
∴BG=CG;
∴②正确.
∵CG=BG,BG=GF,
∴CG=GF,
∴△FGC是等腰三角形,∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG;
∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
∴∠AGB=∠AGF=∠GFC=∠GCF,
∴AG∥CF;
∴③正确
∵Rt△ABG≌Rt△AFG,
∴S△ABG=S△AFG
∴④正确;
∵∠BAG=∠FAG,∠DAE=∠FAE,
又∵∠BAD=90°,
∴∠GAE=45°,
∴∠AGB+∠AED=180°-∠GAE=135°.
∴⑤错误.
故答案为:4.

点评 此题属于四边形的综合题.考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定等知识.注意折叠中的对应关系,注意掌握方程思想的应用是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网