题目内容
2.先化简,再求值:($\frac{{x}^{2}-2x+4}{x-1}$+2-x)÷$\frac{{x}^{2}+4x+4}{x-1}$,其中x=$\sqrt{3}$-2.分析 先化简原式,然后将x的值代入即可求出答案.
解答 解:当x=$\sqrt{3}$-2
原式=$\frac{{x}^{2}-2x+4+(2-x)(x-1)}{x-1}$•$\frac{x-1}{(x+2)^{2}}$
=$\frac{x+2}{x-1}$•$\frac{x-1}{(x+2)^{2}}$
=$\frac{1}{x+2}$
=$\frac{1}{\sqrt{3}}$
=$\frac{\sqrt{3}}{3}$
点评 本题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.
练习册系列答案
相关题目
10.
如图,在平面直角坐标系中,反比例函数y=$\frac{3}{x}$(x>0)的图象经过A、B两点,菱形ABCD在第一象限内,边BC于x轴平行.若A、B两点的纵坐标分别为3和1,则菱形ABCD的面积为( )
| A. | 2 | B. | 4 | C. | 2$\sqrt{2}$ | D. | 4$\sqrt{2}$ |
17.
从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出$\overline{x甲}$=83分,$\overline{x乙}$=82分,绘制成如下尚不完整的统计图表.
甲、乙两人模拟成绩统计表
根据以上信息,回答下列问题:
(1)a=85
(2)请完成图中表示甲成绩变化情况的折线.
(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.
(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.
甲、乙两人模拟成绩统计表
| ① | ② | ③ | ④ | ⑤ | |
| 甲成绩/分 | 79 | 86 | 82 | a | 83 |
| 乙成绩/分 | 88 | 79 | 90 | 81 | 72 |
(1)a=85
(2)请完成图中表示甲成绩变化情况的折线.
(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.
(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.