ÌâÄ¿ÄÚÈÝ
17£®Àà±ÈƽÐÐËıßÐΣ¬ÎÒÃÇѧϰóÝÐΣ¬¶¨Ò壺Á½×éÁڱ߷ֱðÏàµÈµÄËıßÐνÐ×öóÝÐΣ®Èçͼ¢Ù£¬ÈôAD=CD£¬AB=CB£¬ÔòËıßÐÎABCDÊÇóÝÐΣ®£¨1£©ÔÚÍ¬Ò»Æ½ÃæÄÚ£¬¡÷ABCÓë¡÷ADE°´Èçͼ¢ÚËùʾ·ÅÖã¬ÆäÖСÏB=¡ÏD=90¡ã£¬AB=AD£¬BCÓëDEÏཻÓÚµãF£¬ÇëÄãÅжÏËıßÐÎABFDÊDz»ÊÇóÝÐΣ¬²¢ËµÃ÷ÀíÓÉ£®
£¨2£©ÇëÄã½áºÏͼ¢Ù£¬Ð´³öÒ»¸öóÝÐεÄÅж¨·½·¨£¨¶¨Òå³ýÍ⣩£®
ÔÚËıßÐÎABCDÖУ¬ÈôAD=CD£¬¡ÏADB=¡ÏCDB£¬ÔòËıßÐÎABCDÊÇóÝÐΣ®
£¨3£©Èçͼ¢Û£¬ÔڵȱßÈý½ÇÐÎOGHÖУ¬µãGµÄ×ø±êΪ£¨$\sqrt{3}$-1£¬0£©£¬ÔÚÖ±Ïßl£ºy=-xÉÏÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔO£¬G£¬H£¬PΪ¶¥µãµÄËıßÐÎΪóÝÐΣ¿Èô´æÔÚ£¬ÇëÖ±½Óд³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö £¨1£©Á¬½ÓAF£¬Í¨¹ý¸ø¶¨µÄÌõ¼þ½áºÏÈ«µÈÖ±½ÇÈý½ÇÐεÄÅж¨¶¨Àí£¨HL£©¿ÉµÃ³öRt¡÷AFB¡ÕRt¡÷AFD£¬ÓÉ´ËÕÒ³öBF=DF£¬½áºÏóÝÐζ¨Òå¼´¿ÉµÃ³ö½áÂÛ£»
£¨2£©ÈôÒªËıßÐÎABCDÊÇóÝÐΣ¬Ö»ÐèÖ¤Ã÷¡÷ABD¡Õ¡÷CBD¼´¿É£®¸ù¾ÝÈ«µÈÈý½ÇÐεÄÅж¨¶¨Àí£¨SAS£©Ëæ±ãѡȡһ×éÌõ¼þ¡°µ±AD=CD£¬¡ÏADB=¡ÏCDB¡±À´Ö¤Ã÷£»
£¨3£©¹ýµãH×÷HP1¡ÍOGÓÚµãM½»Ö±Ïßy=-xÓÚµãP1µã£¬Á¬½ÓGP1£¬¹ýµãG×÷GP2¡ÍOHÓëN½»Ö±Ïßy=-xÓÚµãP2£¬Á¬½ÓHP2£¬ÓɵȱßÈý½ÇÐεÄÈýÏߺÏÒ»¿ÉµÃÖª¡°HMΪOGµÄ´¹Ö±Æ½·ÖÏߣ¬GNΪOHµÄ´¹Ö±Æ½·ÖÏß¡±£¬Óɴ˼´µÃ³ö¡°ËıßÐÎOHGP1ΪóÝÐΣ¬ËıßÐÎOGHP2ΪóÝÐΡ±£¬ÔÙ¸ù¾Ý¸ø¶¨Ìõ¼þÕÒ³öµãM¡¢N¡¢HµãµÄ×ø±ê£¬ÀûÓôý¶¨ÏµÊý·¨¼´¿ÉµÃ³öÖ±ÏßHMºÍÖ±ÏßGNµÄ½âÎöʽ£¬×îºó½áºÏÁ½Ö±ÏߵĽ»µã֪ʶÇó³öµãPµÄ×ø±ê£®
½â´ð ½â£º£¨1£©ËıßÐÎABFDÊÇóÝÐΣ®
ÀíÓÉ£ºÈçͼ¢Ú£¬Á¬½ÓAF£®![]()
ÔÚRt¡÷AFBºÍRt¡÷AFDÖУ¬$\left\{\begin{array}{l}{AF=AF}\\{AB=AD}\end{array}\right.$£¬
¡àRt¡÷AFB¡ÕRt¡÷AFD£¨HL£©£¬
¡àBF=DF£¬
ÓÖ¡ßAB=AD£¬
¡àËıßÐÎABFDÊÇóÝÐΣ®
£¨2£©ÈôÒªËıßÐÎABCDÊÇóÝÐΣ¬Ö»Ðè¡÷ABD¡Õ¡÷CBD¼´¿É£®
µ±AD=CD£¬¡ÏADB=¡ÏCDBʱ£¬ÔÚ¡÷ABDºÍ¡÷CBDÖУ¬$\left\{\begin{array}{l}{AD=CD}\\{¡ÏADB=¡ÏCDB}\\{BD=BD}\end{array}\right.$£¬
¡à¡÷ABD¡Õ¡÷CBD£¨SAS£©£¬
¡àAB=CB£¬
¡àËıßÐÎABCDÊÇóÝÐΣ®
¹Ê´ð°¸Îª£ºAD=CD£¬¡ÏADB=¡ÏCDB£®
£¨3£©´æÔÚ£¬ÀíÓÉÈçÏ£º
¹ýµãH×÷HP1¡ÍOGÓÚµãM½»Ö±Ïßy=-xÓÚµãP1µã£¬Á¬½ÓGP1£¬¹ýµãG×÷GP2¡ÍOHÓëN½»Ö±Ïßy=-xÓÚµãP2£¬Á¬½ÓHP2£¬Èçͼ¢ÛËùʾ£®![]()
¡ß¡÷OGHΪµÈ±ßÈý½ÇÐΣ¬
¡àHMΪOGµÄ´¹Ö±Æ½·ÖÏߣ¬GNΪOHµÄ´¹Ö±Æ½·ÖÏߣ¬ÇÒOG=GH=HO£¬
¡àP2O=P2H£¬P1O=P1G£¬
¡àËıßÐÎOHGP1ΪóÝÐΣ¬ËıßÐÎOGHP2ΪóÝÐΣ®
¡ß¡÷OGHΪµÈ±ßÈý½ÇÐΣ¬µãGµÄ×ø±êΪ£¨$\sqrt{3}$-1£¬0£©£¬
¡àµãHµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬$\frac{3-\sqrt{3}}{2}$£©£¬µãMµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬0£©£¬µãNµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{4}$£¬$\frac{3-\sqrt{3}}{4}$£©£®
¢Ù¡ßH£¨$\frac{\sqrt{3}-1}{2}$£¬$\frac{3-\sqrt{3}}{2}$£©£¬M£¨$\frac{\sqrt{3}-1}{2}$£¬0£©£¬
¡àÖ±ÏßHMµÄ½âÎöʽΪx=$\frac{\sqrt{3}-1}{2}$£¬
ÁîÖ±Ïßy=-xÖеÄx=$\frac{\sqrt{3}-1}{2}$£¬Ôòy=-$\frac{\sqrt{3}-1}{2}$£®
¡àP1µÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬-$\frac{\sqrt{3}-1}{2}$£©£»
¢ÚÉèÖ±ÏßGNµÄ½âÎöʽΪy=kx+b£¬ÔòÓУ¬
$\left\{\begin{array}{l}{0=£¨\sqrt{3}-1£©k+b}\\{\frac{3-\sqrt{3}}{4}=\frac{\sqrt{3}-1}{4}k+b}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{k=-\frac{\sqrt{3}}{3}}\\{b=\frac{3-\sqrt{3}}{3}}\end{array}\right.$£¬
¡àÖ±ÏßGNµÄ½âÎöʽΪy=-$\frac{\sqrt{3}}{3}$x+$\frac{3-\sqrt{3}}{3}$£®
ÁªÁ¢$\left\{\begin{array}{l}{y=-\frac{\sqrt{3}}{3}x+\frac{3-\sqrt{3}}{3}}\\{y=-x}\end{array}\right.$£¬½âµÃ£º$\left\{\begin{array}{l}{x=-1}\\{y=1}\end{array}\right.$£¬
¹ÊµãP2µÄ×ø±êΪ£¨-1£¬1£©£®
×ÛÉÏ¿ÉÖª£ºÔÚÖ±Ïßl£ºy=-xÉÏ´æÔÚµãP£¬Ê¹µÃÒÔO£¬G£¬H£¬PΪ¶¥µãµÄËıßÐÎΪóÝÐΣ¬µãPµÄ×ø±êΪ£¨$\frac{\sqrt{3}-1}{2}$£¬-$\frac{\sqrt{3}-1}{2}$£©»ò£¨-1£¬1£©£®
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óá¢óÝÐεÄÓ¦Óá¢È«µÈÈý½ÇÐεÄÅж¨¼°ÐÔÖÊ¡¢´ý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽÒÔ¼°½â¶þÔªÒ»´Î·½³Ì×飬½âÌâµÄ¹Ø¼üÊÇ£º£¨1£©ÕÒ³öBF=DF£»£¨2£©Ö¤Ã÷¡÷ABD¡Õ¡÷CBD£»£¨3£©ÕÒ³öµãPµÄλÖã®±¾ÌâÊôÓÚÖеµÌ⣬£¨1£©£¨2£©ÄѶȲ»´ó£¬£¨3£©ÄѶÈÒ²²»´ó£¬µ«ÔÚʵ¼Ê×öÌâÖУ¬²¿·ÖͼÐÎÍùÍù»áÂäÏÂÒ»ÖÖÇé¿ö£¬Òò´ËÔÚÈÕ³£µÄÁ·Ï°ÖÐӦʱ¿ÌÌáÐѺ¢×ÓÃÇ×¢Òâ˼¿¼ÎÊÌâµÄÈ«ÃæÐÔ£®
| A£® | k£¾0 | B£® | k£¼0 | C£® | k=0 | D£® | ²»ÄÜÈ·¶¨ |