题目内容
17.用加减法解下列方程组:(1)$\left\{\begin{array}{l}{x-y=16}\\{x=5y}\end{array}\right.$
(2)$\left\{\begin{array}{l}{x-2y=5}\\{5x-2y=\frac{1}{2}}\end{array}\right.$.
分析 (1)方程组利用加减消元法求出解即可;
(2)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x-y=16①}\\{x-5y=0②}\end{array}\right.$,
①-②得:4y=16,即y=4,
把y=4代入①得:x=20,
则方程组的解为$\left\{\begin{array}{l}{x=20}\\{y=4}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{x-2y=5①}\\{10x-4y=1②}\end{array}\right.$,
②-①×2得:8x=-9,即x=-$\frac{9}{8}$,
把x=-$\frac{9}{8}$代入①得:y=-$\frac{49}{16}$,
则方程组的解为$\left\{\begin{array}{l}{x=-\frac{9}{8}}\\{y=-\frac{49}{16}}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
练习册系列答案
相关题目