题目内容

8.如图,在△ABC中,∠C=90°,点D在边AC上,且∠DBC=∠A,若AC=25,tanA=$\frac{2}{5}$.
(1)BC的长;
(2)∠BDC的余弦值;
(3)AD的长.

分析 (1)根据在△ABC中,∠C=90°,tanA=$\frac{2}{5}$可设BC=x,则AC=5x,再由AC=25即可得出x的值,进而得出BC的长;
(2)根据勾股定理求出AB的长,再由∠DBC=∠A可得出∠BDC=∠ABC,故cos∠BDC=cos∠ABC=$\frac{AC}{AB}$,故可得出结论;
(3)由∠DBC=∠A可得出tan∠A=tan∠DBC=$\frac{BC}{AC}$=$\frac{CD}{BC}$,故可得出CD的长,进而得出结论.

解答 解:(1)∵△ABC中,∠C=90°,tanA=$\frac{2}{5}$,
∴设BC=x,则AC=5x,
∵AC=25,即5x=25,解得x=5,
∴BC=10;

(2)∵△ABC中,∠C=90°,AC=25,BC=10,
∴AB=$\sqrt{{25}^{2}+{10}^{2}}$=29.
∵∠DBC=∠A,
∴∠BDC=∠ABC,
∴cos∠BDC=cos∠ABC=$\frac{AC}{AB}$=$\frac{25}{29}$;

(3)∵∠DBC=∠A,
∴tan∠A=tan∠DBC=$\frac{BC}{AC}$=$\frac{CD}{BC}$,即$\frac{10}{25}$=$\frac{CD}{10}$,解得CD=4,
∴AD=AC-CD=25-4=21.

点评 本题考查的是解直角三角形,熟知锐角三角函数的定义是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网