在△MNB中,BN=6,点A,C,D分别在MB,NB,MN上,四边形ABCD为平行四边形,且∠NDC=∠MDA,则四边形ABCD的周长是(  )

A.24 B.18 C.16 D.12

D 【解析】 在平行四边形ABCD中CD∥AB,AD∥BC,∴∠M=∠NDC,∠N=∠MDA,∵∠NDC= ∠MDA,∴∠M=∠N=∠NDC=∠MDA,∴MB=BN=6,CD=CN,AD=MA,∴四边形ABCD的周长=AB+BC+CD+AD=MA+AB+BC+CN=MB+BN=2BN=12.

如图,已知线段AB。

(1)用尺规作图的方法作出线段AB的垂直平分线l(保留作图痕迹,不要求写出作法);

(2)在(1)中所作的直线l上任意取两点M、N(线段AB的上方),连接AM、AN。BM、BN。

求证:∠MAN=∠MBN。

【解析】 (1)作图如下: (2)证明:根据题意作出图形如图, ∵点M、N在线段AB的垂直平分线l上, ∴AM=BM,AN=BN。 又 ∵MN=MN,∴△AMN≌△BMN(SSS)。 ∴∠MAN=∠MBN。 【解析】(1)根据线段垂直平分线的性质作图。 (2)根据线段垂直平分线上的点到线段两端距离相等的性质,可得AM=BM,AN=BN。MN是公共边,从而...

线段是中心对称图形,对称中心是它的中点; _____(判断对错)

正确 【解析】因为线段绕它的中点旋转180度,可以和它本身重合. 故答案:正确.

关于中心对称的两个图形,对称点的连线经过__________

对称中心 【解析】关于中心对称的两个图形,对称点的连线经过对称中心. 故答案:对称中心.

下列图形中是轴对称而不是中心对称图形的是(     )

A. 平行四边形

B. 线段

C. 角

D. 正方形

C 【解析】试题解析:平行四边形的对称中心为两条对角线的交点,不是轴对称图形;线段的对称中心为线段的中点,对称轴为线段的中垂线;角不是中心对称图形,对称轴为角平分线所在直线;正方形的对称中心为两条对角线的交点,对称轴为两条对角线所在直线及两条对边中点连线所在直线;所以选择C.

分解因式:

(1) (2)

(3) (4)

(5) (6)

(7) 8)

(9) (10)

(1)-(2a-1)2;(2)-y(2x-3y)2;(3)(3x-3y+1)2;(4)3(1-x)2;(5)-a(1-a)2; (6)(x+y)2(x-y)2; (7)(a+b)2(a-b)2; (8)(x+3)2(x-3)2; (9) ;(10) . 【解析】试题分析:(1)首先提取负号,再利用完全平方公式进行分解; (2)首先提取公因式-y,再利用完全平方公式进行分解; ...

若非零实数满足,则的值为( )

A. -2 B. 2 C. D.

B 【解析】试题解析:把a2+4b2=4ab,变形得:()2-4•+4=0,即(-2)2=0, 解得: =2, 故选B

已知二次函数y=﹣x2+2x+m的部分图象如图所示,则关于x的一元二次方程﹣x2+2x+m=0的解为_____.

x1=4,x2=﹣2 【解析】试题分析:由二次函数y=﹣x2+2x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+2x+m=0的解. 【解析】 依题意得二次函数y=﹣x2+2x+m的对称轴为x=1,与x轴的一个交点为(3,0), ∴抛物线...

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网