题目内容

16.如图的实线部分是由Rt△ABC经过两次折叠得到的,首先将Rt△ABC沿BD折叠,使点C落在斜边上的点C′处,再沿DE折叠,使点A落在DC′的延长线上的点A′处.若图中∠C=90°,∠A=30°,BC=5cm,则折痕DE的长为(  )
A.3cmB.$2\sqrt{3}$cmC.$2\sqrt{5}$cmD.$\frac{10}{3}$cm

分析 根据直角三角形两锐角互余求出∠ABC=60°,翻折前后两个图形能够互相重合可得∠BDC=∠BDC′,∠CBD=∠ABD=30°,∠ADE=∠A′DE,然后求出∠BDE=90°,再解直角三角形求出BD,然后求出DE即可.

解答 解:∵△ABC是直角三角形,∠A=30°,
∴∠ABC=90°-30°=60°,
∵沿折痕BD折叠点C落在斜边上的点C′处,
∴∠BDC=∠BDC′,∠CBD=∠ABD=$\frac{1}{2}$∠ABC=30°,
∵沿DE折叠点A落在DC′的延长线上的点A′处,
∴∠ADE=∠A′DE,
∴∠BDE=∠ABD+∠A′DE=$\frac{1}{2}$×180°=90°,
在Rt△BCD中,BD=BC÷cos30°=5÷$\frac{\sqrt{3}}{2}$=$\frac{10\sqrt{3}}{3}$cm,
在Rt△BDE中,DE=BD•tan30°=$\frac{10\sqrt{3}}{3}$×$\frac{\sqrt{3}}{3}$=$\frac{10}{3}$cm.
故选:D.

点评 本题考查了翻折变换的性质,解直角三角形,熟记性质并分别求出有一个角是30°角的直角三角形是解题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网