题目内容
15.当a=6时,方程组$\left\{\begin{array}{l}ax+y=19\\ x-y=2\end{array}\right.$的解x与y的和是4.分析 根据方程组的解的概念,联立$\left\{\begin{array}{l}{x-y=2}\\{x+y=4}\end{array}\right.$求得x、y的值,代入ax+y=19解方程可得a的值.
解答 解:∵程组$\left\{\begin{array}{l}ax+y=19\\ x-y=2\end{array}\right.$的解x+y=4,
∴联立$\left\{\begin{array}{l}{x-y=2}\\{x+y=4}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,
将x=3、y=1代入ax+y=19,得:3a+1=19,
解得:a=6.
故答案为:6.
点评 本题主要考查二元一次方程组的解的概念及解方程组的能力,根据方程组的解的概念得到新方程组是解题的关键.
练习册系列答案
相关题目