题目内容

20.如图,将?ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.
(1)求证:四边形ABEC是平行四边形;
(2)连接AC、BE,若四边形ABEC是矩形,则∠AFC与∠D应满足什么数量关系?并说明理由.

分析 (1)根据平行四边形的性质得到AB∥CD,AB=CD,然后根据CE=DC,得到AB=EC,AB∥EC,利用一组对边平行且相等的四边形是平行四边形判断即可;
(2)由(1)得的结论先证得四边形ABEC是平行四边形,通过角的关系得出FA=FE=FB=FC,AE=BC,得证.

解答 (1)证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵CE=DC,
∴AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,

(2)当∠AFC=2∠D,四边形ABEC是矩形,
理由:∵AB=EC,AB∥EC,
∴四边形ABEC是平行四边形,
∴FA=FE,FB=FC,
∵四边形ABCD是平行四边形,
∴∠ABC=∠D,
又∵∠AFC=2∠D,
∴∠AFC=2∠ABC,
∵∠AFC=∠ABC+∠BAF,
∴∠ABC=∠BAF,
∴FA=FB,
∴FA=FE=FB=FC,
∴AE=BC,
∴四边形ABEC是矩形.

点评 此题考查了平行四边形的判定与性质和性质及矩形的判定,关键是先由平行四边形的性质证三角形全等,然后推出平行四边形通过角的关系证矩形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网