题目内容
19.分析 根据平行线的性质得到∠1=∠FAB,由等腰三角形的性质得到∠EAF=∠EFA,根据邻补角和对顶角的定义即可得到结论.
解答
证明:∵EF∥AB,
∴∠1=∠FAB,
∵AE=EF,
∴∠EAF=∠EFA,
∵∠1=∠EFA,
∴∠EAF=∠1,
∴∠BAC=2∠1.
点评 本题考查了平行线的性质,邻补角的定义,熟练掌握平行线的性质是解题的关键.
练习册系列答案
相关题目
4.探索与应用.
(1)先填写下表,通过观察后在回答问题:
①表格中x=0.1;y=10;
②从表格中探究a与$\sqrt{a}$的数位的规律,并利用这个规律解决下面两个问题:
已知$\sqrt{3.24}$=1.8,若$\sqrt{a}$=180,则a=32400.
已知$\sqrt{25.36}$=5.036,$\sqrt{253.6}$=15.906,则$\sqrt{253600}$=503.6.
(2)阅读例题,然后回答问题;
例题:设a、b是有理数,且满足a+$\sqrt{2}$b=3-2$\sqrt{2}$,求a+b的值.
解:由题意得(a-3)+(b+2)$\sqrt{2}$=0,因为a、b都是有理数,所以a-3,b+2也是有理数,由于$\sqrt{2}$是无理数,所以a-3=0,b+2=0,所以a=3,b=-2,所以a+b=3+(-2)=-1.
问题:设x、y都是有理数,且满足x2-2y+$\sqrt{5}$y=10+3$\sqrt{5}$,求xy的值.
(1)先填写下表,通过观察后在回答问题:
①表格中x=0.1;y=10;
②从表格中探究a与$\sqrt{a}$的数位的规律,并利用这个规律解决下面两个问题:
已知$\sqrt{3.24}$=1.8,若$\sqrt{a}$=180,则a=32400.
已知$\sqrt{25.36}$=5.036,$\sqrt{253.6}$=15.906,则$\sqrt{253600}$=503.6.
| a | … | 0.0001 | 0.01 | 1 | 100 | 10000 | … |
| $\sqrt{a}$ | … | 0.01 | x | 1 | y | 100 | … |
例题:设a、b是有理数,且满足a+$\sqrt{2}$b=3-2$\sqrt{2}$,求a+b的值.
解:由题意得(a-3)+(b+2)$\sqrt{2}$=0,因为a、b都是有理数,所以a-3,b+2也是有理数,由于$\sqrt{2}$是无理数,所以a-3=0,b+2=0,所以a=3,b=-2,所以a+b=3+(-2)=-1.
问题:设x、y都是有理数,且满足x2-2y+$\sqrt{5}$y=10+3$\sqrt{5}$,求xy的值.
9.为了迎接暑假的购物高峰,某运动品牌服装专卖店准备购进甲、乙两种服装,其中甲、乙两种服装的进价和售价如表:
经调查:用900元购进甲服装的数量与用750元购进乙服装的数量相同.
(1)求m的值;
(2)若专卖店购进的甲、乙两种服装共200件,考虑市场需求和销售利润,要求购进甲服装的数量不超过80件,且总利润(利润=售价-进价)不少于26700元,问该专卖店有几种进货方案?
(3)专卖店准备在8月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么在(2)中所求的几种进货方案中,该专卖店要获得最大利润,应如何进货?
| 服装价格 | 甲 | 乙 |
| 进价(元/件) | m | m-30 |
| 售价(元/件) | 320 | 280 |
(1)求m的值;
(2)若专卖店购进的甲、乙两种服装共200件,考虑市场需求和销售利润,要求购进甲服装的数量不超过80件,且总利润(利润=售价-进价)不少于26700元,问该专卖店有几种进货方案?
(3)专卖店准备在8月1日当天对甲种服装进行优惠促销活动,决定对甲种服装每件优惠a(0<a<20)元出售,乙种服装价格不变,那么在(2)中所求的几种进货方案中,该专卖店要获得最大利润,应如何进货?