题目内容
15.已知抛物线L:y=ax2+bx+c与抛物线L′:y=x2-2mx+4m+1关于直线x=2对称,且L′交y轴于点P(0,21),则方程ax2+bx+c=0的两个根为( )| A. | x1=0,x2=3 | B. | x1=1,x2=-3 | C. | x1=3,x2=7 | D. | x1=-7,x2=-3 |
分析 由抛物线L′:y=x2-2mx+4m+1交y轴于点P(0,21)知4m+1=21,求得m即可抛物线L′的解析式,求出其与x轴的交点,根据两抛物线关于x=2对称得出答案.
解答 解:∵抛物线L′:y=x2-2mx+4m+1交y轴于点P(0,21),
∴4m+1=21,
解得:m=5,
∴抛物线L′解析式为:y=x2-10x+21,
当y=0时,x2-10x+21=0,
解得:x=3或x=7,
即抛物线L′与x轴的交点为(3,0)、(7,0),
∵抛物线L:y=ax2+bx+c与抛物线L′:y=x2-2mx+4m+1关于直线x=2对称,
∴抛物线L:y=ax2+bx+c与x轴的两个交点为(1,0)、(-3,0),
即方程ax2+bx+c=0的两个根为x1=1,x2=-3,
故选:C.
点评 本题主要考查抛物线与x轴的交点,根据题意求出抛物线L′的解析式及其与x轴的交点是解题的关键.
练习册系列答案
相关题目
4.
佳佳向探究一元三次方程x3+2x2-x-2=0的解的情况,根据以往的学习经验,他想到了方程与函数的关系,一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b(k≠0)的解,二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标即为一元二次方程ax2+bx+c=0(a≠0)的解,如:二次函数y=x2-2x-3的图象与x轴的交点为(-1,0)和(3,0),交点的横坐标-1和3即为x2-2x-3=0的解.
根据以上方程与函数的关系,如果我们直到函数y=x3+2x2-x-2的图象与x轴交点的横坐标,即可知方程x3+2x2-x-2=0的解.
佳佳为了解函数y=x3+2x2-x-2的图象,通过描点法画出函数的图象.
(1)直接写出m的值,并画出函数图象;
(2)根据表格和图象可知,方程的解有3个,分别为-2,或-1或1;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.
根据以上方程与函数的关系,如果我们直到函数y=x3+2x2-x-2的图象与x轴交点的横坐标,即可知方程x3+2x2-x-2=0的解.
佳佳为了解函数y=x3+2x2-x-2的图象,通过描点法画出函数的图象.
| x | … | -3 | -$\frac{5}{2}$ | -2 | -$\frac{3}{2}$ | -1 | -$\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 1 | $\frac{3}{2}$ | 2 | … |
| y | … | -8 | -$\frac{21}{8}$ | 0 | $\frac{5}{8}$ | m | -$\frac{9}{8}$ | -2 | -$\frac{15}{8}$ | 0 | $\frac{35}{8}$ | 12 | … |
(2)根据表格和图象可知,方程的解有3个,分别为-2,或-1或1;
(3)借助函数的图象,直接写出不等式x3+2x2>x+2的解集.
5.
定义[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y=[x]的图象如图所示,则方程[x]=$\frac{1}{2}$x2的解为( )
| A. | 0或$\sqrt{2}$ | B. | 0或2 | C. | 1或$-\sqrt{2}$ | D. | $\sqrt{2}$或-$\sqrt{2}$ |