ÌâÄ¿ÄÚÈÝ
20£®¹Û²ìÏÂÁÐʽ×Ó£º¢Ù$\sqrt{2-\frac{2}{5}}=2\sqrt{\frac{2}{5}}$£»¢Ú$\sqrt{3-\frac{3}{10}}=3\sqrt{\frac{3}{10}}$£»¢Û$\sqrt{4-\frac{4}{17}}=4\sqrt{\frac{4}{17}}$£»¢Ü$\sqrt{5-\frac{5}{26}}=5\sqrt{\frac{5}{26}}$£»¡ÇëÄã°´ÕÕ¹æÂÉд³öµÚn£¨n¡Ý1£©¸öʽ×ÓÊÇ£¨¡¡¡¡£©| A£® | $\sqrt{n-1-\frac{n-1}{£¨n-1£©^{2}+1}}$=£¨n-1£©$\sqrt{\frac{n-1}{£¨n-1£©^{2}+1}}$ | B£® | $\sqrt{n-\frac{n}{{n}^{2}-1}}=n\sqrt{\frac{n}{{n}^{2}-1}}$ | ||
| C£® | $\sqrt{n+1-\frac{n+1}{£¨n+1£©^{2}+1}}$=£¨n+1£©$\sqrt{\frac{n+1}{£¨n+1£©^{2}+1}}$ | D£® | $\sqrt{n-\frac{n}{{n}^{2}+1}}=n\sqrt{\frac{n}{{n}^{2}+1}}$ |
·ÖÎö ¹Û²ìµÈʽ£¬ÕÒ³ö¹æÂÉ£¬Ð´³öµÚn¸öʽ×Ó¼´¿É£®
½â´ð ½â£ºÓɹæÂɿɵ㬵Ún¸öʽ×ÓΪ£º
$\sqrt{n+1-\frac{n+1}{£¨n+1£©^{2}+1}}$=£¨n+1£©$\sqrt{\frac{n+1}{£¨n+1£©^{2}+1}}$£®
¹ÊÑ¡£ºB£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËËãÊõƽ·½¸ù£¬½âÌâµÄ¹Ø¼üÊǹ۲ìµÈʽ£¬ÕÒ³ö¹æÂÉ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
10£®Èô¦Á£¬¦ÂÊÇ·½³Ìx2-2x-2=0µÄÁ½¸öʵÊý¸ù£¬Ôò¦Á2+¦Â2µÄֵΪ£¨¡¡¡¡£©
| A£® | 10 | B£® | 9 | C£® | 8 | D£® | 7 |
11£®Ä³ÊÐÀºÇò¶Óµ½ÊÐÒ»ÖÐÑ¡°ÎÒ»Ãû¶ÓÔ±£®½ÌÁ·¶ÔÍõÁÁºÍÀî¸ÕÁ½Ãûͬѧ½øÐÐ5´Î3·ÖͶÀº²âÊÔ£¬Ã¿ÈËÿ´ÎͶ10¸öÇò£¬Èçͼ¼Ç¼µÄÊÇÕâÁ½Ãûͬѧ5´ÎͶÀºÖÐËùͶÖеĸöÊý£®

£¨1£©ÇëÄã¸ù¾ÝͼÖеÄÊý¾Ý£¬Ìîд±í¸ñ£»
£¨2£©ÈôÄãÊǽÌÁ·£¬Äã´òËãѡˣ¿¼òҪ˵Ã÷ÀíÓÉ£®
£¨1£©ÇëÄã¸ù¾ÝͼÖеÄÊý¾Ý£¬Ìîд±í¸ñ£»
| ÐÕÃû | ƽ¾ùÊý | ÖÚÊý | ·½²î |
| ÍõÁÁ | 7 | 7 | 0.4 |
| Àî¸Õ | 7 | 7 | 2.8 |
8£®
Èçͼ£¬¹ý?ABCDµÄ¶Ô½ÇÏßACµÄÖеãOÈÎ×÷Á½Ìõ»¥Ïà´¹Ö±µÄÖ±Ïߣ¬·Ö±ð½»AB£¬BC£¬CD£¬DAÓÚE£¬F£¬G£¬HËĵ㣬Á¬½ÓEF£¬FG£¬GH£¬HE£¬ÓÐÏÂÃæËĸö½áÂÛ£¬¢ÙOH=OF£»¢Ú¡ÏHGE=¡ÏFGE£»¢ÛSËıßÐÎDHOG=SËıßÐÎBFOE£»¢Ü¡÷AHO¡Õ¡÷AEO£¬ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | ¢Ù¢Û | B£® | ¢Ù¢Ú¢Û | C£® | ¢Ú¢Ü | D£® | ¢Ú¢Û¢Ü |
5£®Èôµã£¨m£¬n£©ÔÚº¯Êýy=2x+1µÄͼÏóÉÏ£¬Ôò4m-2nµÄÖµÊÇ£¨¡¡¡¡£©
| A£® | 2 | B£® | -1 | C£® | 1 | D£® | -2 |
10£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | £¨-3mn£©2=-6m2n2 | B£® | 4x4+2x4+x4=6x4 | C£® | £¨a-b£©£¨-a-b£©=a2-b2 | D£® | £¨xy£©2¡Â£¨-xy£©=-xy |