题目内容
5.(1)求a、b的值;
(2)若点P在x轴上,且△AOP的面积是△AOB的面积的$\frac{1}{2}$,求点P的坐标.
分析 (1)直接利用待定系数法把A(a,3)代入反比例函数$y=-\frac{3}{x}$中即可求出a的值,然后把A的坐标代入y=-x+b即可求得b的值;
(2)根据直线解析式求得B的坐标,然后根据题意即可求得P的坐标.
解答 解:(1)∵直线y=-x+b与反比例函数$y=-\frac{3}{x}$的图象相交于点A(a,3),
∴3=-$\frac{3}{a}$,
∴a=-1.
∴A(-1,3).
把A的坐标代入y=-x+b得,3=1+b,
∴b=2;
(2)直线y=-x+2与x轴相交于点B.
∴B(2,0),
∵点P在x轴上,
△AOP的面积是△AOB的面积的$\frac{1}{2}$,
∴OB=2PO,
∴P的坐标为(1,0 )或(-1,0 ).
点评 此题主要考查了反比例函数和一次函数的交点问题,关键是求出A、B点坐标,利用待定系数法和数形结合的思想解决问题.
练习册系列答案
相关题目
13.某家具商场计划购进某种餐桌、餐椅,有关信息如表:
(1)若该商场购进餐椅的数量是餐桌数量的5倍还多20张,且餐桌和餐椅的总数量不超过200张.该商场计划将一半的餐桌成套(一张餐桌和4张餐椅配成一套)销售,其余餐桌、餐椅以零售方式销售.请问怎样进货,才能获得最大利润?最大利润是多少?
(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?
| 原进价(元/张) | 零售价(元/张) | 成套售价(元/张) | |
| 餐桌 | 150 | 270 | 500元 |
| 餐椅 | 40 | 70 |
(2)由于原材料价格上涨,每张餐桌和餐椅的进价都上涨了10元,按照(1)中获得最大利润的方案购进餐桌和餐椅,在调整成套销售量而不改变销售价格的情况下,实际全部售出后,所得利润比(1)中的最大利润少了2250元.请问本次成套的销售量为多少?
17.已知关于x的一元二次方程x2+x+m2-1=0的一个根是0,则m的值为( )
| A. | 1 | B. | 0 | C. | -1 | D. | 1或-1 |