题目内容
20.分析 根据矩形的性质得出OA=OB=OC=OD,∠BAD=90°,求出△AOB是等边三角形,求出OB=AB=2,根据矩形的性质求出BD,根据勾股定理求出AD即可.
解答 解:∵四边形ABCD是矩形,
∴OA=OB=OC=OD,∠BAD=90°,
∵∠AOB=60°,
∴△AOB是等边三角形,
∴OB=AB=2,
∴BD=2BO=4,
在Rt△BAD中,AD=$\sqrt{B{D}^{2}-A{B}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$.
点评 本题考查了矩形的性质,等边三角形的性质和判定,勾股定理的应用,能熟记矩形的性质是解此题的关键.
练习册系列答案
相关题目
8.
如图,点O在直线AB上,且OC⊥OD.若么∠BOD=55°,则∠COA的度数是( )
| A. | 25° | B. | 35° | C. | 45° | D. | 55° |