题目内容
17.| A. | 0<CE≤8 | B. | 0<CE≤5 | C. | 3<CE≤8 | D. | 3<CE≤5 |
分析 过A作AM⊥BC于N,CN⊥AD于N,根据平行四边形的性质求出AD∥BC,AB=CD=5,求出AM、CN、AC、CD的长,即可得出符合条件的情况.
解答 解:如图,过A作AM⊥BC于N,CN⊥AD于N,![]()
∵四边形ABCD是平行四边形,
∴AD∥BC,AB=CD=5,
∴AM=CN,
∵AB=5,cosB=$\frac{4}{5}=\frac{BM}{AB}$,
∴BM=4,
∵BC=8,
∴CM=4=BC,
∵AM⊥BC,
∴AC=AB=5,
由勾股定理得:AM=CN=$\sqrt{A{C}^{2}-C{M}^{2}}$=3,
∴当以CE为半径的圆C与边AD有两个交点时,半径CE的取值范围是3<CE≤5,
故选:D.
点评 本题考查了直线和圆的位置关系,勾股定理,平行四边形的性质的应用,能求出符合条件的所有情况是解此题的关键,此题综合性比较强,有一定的难度.
练习册系列答案
相关题目
5.已知A地在B地的西方,且有一以A、B两地为端点的东西向直线道路,其全长为400公里.今在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,如图所示.若某车从此道路上距离A地19公里处出发,往东直行320公里后才停止,则此车在停止前经过的最后一个广告牌距离A地多少公里?( )

| A. | 309 | B. | 316 | C. | 336 | D. | 339 |
9.估计$\sqrt{21}$-1的值在( )
| A. | 1和2之间 | B. | 2和3之间 | C. | 3和4之间 | D. | 4和5之间 |