题目内容

5.已知A地在B地的西方,且有一以A、B两地为端点的东西向直线道路,其全长为400公里.今在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,如图所示.若某车从此道路上距离A地19公里处出发,往东直行320公里后才停止,则此车在停止前经过的最后一个广告牌距离A地多少公里?(  )
A.309B.316C.336D.339

分析 由于在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,所以第n个广告牌距离A地12+27(n-1),设此车停止时前面有x个广告牌,根据题意列出不等式12+27(x-1)≤320+19,将不等式的最大整数解代入12+27(x-1),计算即可.

解答 解:设此车停止时前面有x个广告牌,根据题意得
12+27(x-1)≤320+19,
x≤13$\frac{3}{27}$,
即此车停止时前面有13个广告牌,并且超过第13个广告牌3公里,
所以此车在停止前经过的最后一个广告牌距离A地320+19-3=336公里.
故选C.

点评 本题考查了一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系列出不等式,再求解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网