题目内容
5.已知A地在B地的西方,且有一以A、B两地为端点的东西向直线道路,其全长为400公里.今在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,如图所示.若某车从此道路上距离A地19公里处出发,往东直行320公里后才停止,则此车在停止前经过的最后一个广告牌距离A地多少公里?( )| A. | 309 | B. | 316 | C. | 336 | D. | 339 |
分析 由于在此道路上距离A地12公里处设置第一个广告牌,之后每往东27公里就设置一个广告牌,所以第n个广告牌距离A地12+27(n-1),设此车停止时前面有x个广告牌,根据题意列出不等式12+27(x-1)≤320+19,将不等式的最大整数解代入12+27(x-1),计算即可.
解答 解:设此车停止时前面有x个广告牌,根据题意得
12+27(x-1)≤320+19,
x≤13$\frac{3}{27}$,
即此车停止时前面有13个广告牌,并且超过第13个广告牌3公里,
所以此车在停止前经过的最后一个广告牌距离A地320+19-3=336公里.
故选C.
点评 本题考查了一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的不等关系列出不等式,再求解.
练习册系列答案
相关题目
17.
如图,已知在平行四边形ABCD中,AB=5,BC=8,cosB=$\frac{4}{5}$,点E是BC边上的动点,当以CE为半径的⊙C与边AD有两个交点时,半径CE的取值范围是( )
| A. | 0<CE≤8 | B. | 0<CE≤5 | C. | 3<CE≤8 | D. | 3<CE≤5 |